↓ Skip to main content

Brace technology thematic series: the 3D Rigo Chêneau-type brace

Overview of attention for article published in Scoliosis and Spinal Disorders, March 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
97 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Brace technology thematic series: the 3D Rigo Chêneau-type brace
Published in
Scoliosis and Spinal Disorders, March 2017
DOI 10.1186/s13013-017-0114-2
Pubmed ID
Authors

Manuel Rigo, Mina Jelačić

Abstract

Chêneau and Matthias introduced in 1979 a brace concept inspired in casting. The brace was initially named "CTM" from Chêneau-Toulouse-Münster. The name "CTM" is still popular in France but "Chêneau-type brace" is its common name in the rest of the world. Principles to construct this brace were originally based on anatomical descriptions rather than biomechanics, and its standard is poor. This paper follows the format of the "Brace technology thematic series." The Chêneau-type brace has been versioned by many authors. The contribution of the present authors is about to the description of the principles based on biomechanics and a specific classification created to help to standardize the brace design and construction. The classification also correlates with specific exercises (PSSE) according to the Barcelona School, using Schroth principles (BSPTS). This current authors' version has been named "3D Rigo Chêneau-type brace." The 3D principles are related to a detorsional mechanism created by forces and counterforces to bring the trunk into the best possible correction: (1) three-point system; (2) regional derotation; (3) sagittal alignment and balance. A custom-made TLS brace (thoracolumbosacral) is built in order to provide highly defined contact areas, which are located, shaped, and oriented in the space to generate the necessary vectors of force to correct in 3D. Expansion areas are also essential for tissue migration, growth, and breathing movements, although body reactions depend basically on how well designed are the contact areas. The brace is open in front and can be considered rigid and dynamic at the same time. Blueprints for construction of the brace according to the revisited Rigo classification are fully described in this paper. Different independent teams have published comparable outcomes by using Chêneau-type braces and versions in combination with specific exercises and following a similar scoliosis comprehensive care model. This present version is also supported by scientific results from several independent teams.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 97 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 97 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 16 16%
Student > Master 13 13%
Other 8 8%
Student > Doctoral Student 6 6%
Student > Postgraduate 6 6%
Other 18 19%
Unknown 30 31%
Readers by discipline Count As %
Medicine and Dentistry 23 24%
Nursing and Health Professions 13 13%
Engineering 10 10%
Biochemistry, Genetics and Molecular Biology 4 4%
Business, Management and Accounting 2 2%
Other 8 8%
Unknown 37 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 November 2018.
All research outputs
#14,337,934
of 22,959,818 outputs
Outputs from Scoliosis and Spinal Disorders
#49
of 97 outputs
Outputs of similar age
#173,875
of 308,425 outputs
Outputs of similar age from Scoliosis and Spinal Disorders
#6
of 9 outputs
Altmetric has tracked 22,959,818 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 97 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 308,425 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.