↓ Skip to main content

Thrombus leukocytes exhibit more endothelial cell-specific angiogenic markers than peripheral blood leukocytes do in acute coronary syndrome patients, suggesting a possibility of trans-differentiation…

Overview of attention for article published in Journal of Hematology & Oncology, March 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Thrombus leukocytes exhibit more endothelial cell-specific angiogenic markers than peripheral blood leukocytes do in acute coronary syndrome patients, suggesting a possibility of trans-differentiation: a comprehensive database mining study
Published in
Journal of Hematology & Oncology, March 2017
DOI 10.1186/s13045-017-0440-0
Pubmed ID
Authors

Hangfei Fu, Nish Vadalia, Eric R. Xue, Candice Johnson, Luqiao Wang, William Y. Yang, Claudette Sanchez, Jun Nelson, Qian Chen, Eric T. Choi, Jian-Xing Ma, Jun Yu, Hong Wang, Xiaofeng Yang

Abstract

Current angiogenic therapies for cancers and cardiovascular diseases have not yet achieved expected benefits, which reflects the need for improved understanding of angiogenesis. In this study, we focused on solving the problem of whether tissues have different angiogenic potentials (APs) in physiological conditions and how angiogenesis is regulated in various disease conditions. In healthy and diseased human and mouse tissues, we profiled the expression of 163 angiogenic genes, including transcription regulators (TRs), growth factors and receptors (GF/Rs), cytokines and chemokines (C/Cs), and proteases and inhibitors (P/Is). TRs were categorized as inflammatory, homeostatic, and endothelial cell-specific TRs, and C/Cs were categorized as pro-angiogenic, anti-angiogenic, and bi-functional C/Cs. We made the following findings: (1) the human heart, muscle, eye, pancreas, and lymph node are among the tissues with the highest APs; (2) tissues with high APs have more active angiogenic pathways and angiogenic C/C responses; (3) inflammatory TRs dominate regulation of all angiogenic C/Cs; homeostatic TRs regulate all to a lower extent, while endothelial cell-specific TRs mainly regulate pro-angiogenic and bi-functional C/Cs; (4) tissue AP is positively correlated with the expression of oxygen sensors PHD2 and HIF1B, VEGF pathway gene VEGFB, and stem cell gene SOX2; (5) cancers of the digestive system tend to have increased angiogenesis dominated by endothelial cell-specific pro-angiogenic pathways, while lung cancer and prostate cancer have significantly decreased angiogenesis; and (6) endothelial cell-specific pro-angiogenic pathways are significantly increased in thrombus-derived leukocytes in patients with acute coronary artery disease. Our results demonstrate that thrombus-derived leukocytes express more endothelial cell-specific angiogenic markers to directly promote angiogenesis after myocardial infarction and that certain solid tumors may be more sensitive to anti-angiogenic therapies than others.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 7 26%
Student > Ph. D. Student 3 11%
Researcher 3 11%
Other 2 7%
Professor > Associate Professor 2 7%
Other 6 22%
Unknown 4 15%
Readers by discipline Count As %
Medicine and Dentistry 10 37%
Biochemistry, Genetics and Molecular Biology 3 11%
Nursing and Health Professions 3 11%
Immunology and Microbiology 1 4%
Computer Science 1 4%
Other 2 7%
Unknown 7 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 March 2017.
All research outputs
#15,451,618
of 22,961,203 outputs
Outputs from Journal of Hematology & Oncology
#783
of 1,194 outputs
Outputs of similar age
#194,564
of 309,217 outputs
Outputs of similar age from Journal of Hematology & Oncology
#27
of 41 outputs
Altmetric has tracked 22,961,203 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,194 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.0. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,217 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.