↓ Skip to main content

Bacterial flora of combat wounds from eastern Ukraine and time-specified changes of bacterial recovery during treatment in Ukrainian military hospital

Overview of attention for article published in BMC Research Notes, April 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (55th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
5 tweeters

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Bacterial flora of combat wounds from eastern Ukraine and time-specified changes of bacterial recovery during treatment in Ukrainian military hospital
Published in
BMC Research Notes, April 2017
DOI 10.1186/s13104-017-2481-4
Pubmed ID
Authors

Kovalchuk P. Valentine, Kondratiuk M. Viacheslav

Abstract

Microbiology of modern war wounds is unique for each military conflict. Climatic and geographical features of the theater of war, contemporary warfare as well as wound management affect the microbial flora of wounds. This study was designed to determine time-specific microbial flora of combat wounds of upper and lower extremities obtained during the war in eastern Ukraine. The patients enrolled in study had combat wounds of upper or lower extremities which were treated in the Military Medical Clinical Center of Central Region. The wounds were swab-cultured and measured at each surgical debridement. The recovered microorganisms were identified and their antimicrobial resistance profiles were evaluated by disc diffusion method. Forty-nine patients with battle-field wounds were enrolled in the study from July to November 2014; all patients were male with a mean Injury Severity Score and arrival APACHE II scores of 16.2 ± 10.7 and 7.4 ± 4.2 respectively. Among 128 swab cultures, 100 swab cultures were positive. Swab cultures were obtained from 57 wounds of 49 patients. The results of the test showed that 87.7% of all positive swab cultures contained a single-organism while the rest of the swab-culture results showed polymicrobial growth. Among the isolated microorganisms 65% (76 strains) were Gram-negative rods, 22.2% (26 strains) of Gram-positive cocci, followed by Gram-positive rods (12.8%, 15 strains). We found that epidemiology of wound infection changes with the time after injury. The most common bacterial isolates cultured during the first week were Gram-positive microbes with low pathogenicity. The number of Gram-negative rods increased during the wound healing process. The incidence of Gram-positive microorganisms' growth fell after the first week and increased after third week. During wound healing, bacterial microflora of wounds changes with increasing number of Gram-negative rods with predominance of Acinetobacter species. Predominant microorganisms in positive swab-cultures after first week were nonfermentative Gram-negative bacilli (68% of swab-cultures), which in 53% of the swab-cultures belonged to the genus Acinetobacter, and in 15% to the genus Pseudomonas. The incidence of polymicrobial wound cultures increased from first week to second post-injury week. The most frequent microbial mixture were Acinetobacter baumannii with Enterobacteriaceae or other nonfermentative Gram negative rods with Enterococcus spp. We observed bacteria recovery from wounds during proliferation phase. These wounds had no pure inflammation signs and were free of devitalized tissues. Any wound is at some risk of becoming infected. In the event of infection, a wound fails to heal, treatment costs rise, and general wound management practices become more resource demanding. Determining the microorganisms which colonize battle wounds and cause wound infection is paramount. This information can help to treat battle wound infections or even changes infection control strategies. The fact of shifting in wound microbiology in the favor of bacteria responsible for healthcare-associated infections support to the proposition that these changes are nosocomially related [4, 14]. For Ukrainian military medicine this study is the first time-specified assessment of battle wound colonization from the World War II.

Twitter Demographics

The data shown below were collected from the profiles of 5 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 43 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 16%
Student > Doctoral Student 6 14%
Student > Master 6 14%
Student > Bachelor 4 9%
Student > Postgraduate 2 5%
Other 6 14%
Unknown 12 28%
Readers by discipline Count As %
Medicine and Dentistry 12 28%
Immunology and Microbiology 4 9%
Pharmacology, Toxicology and Pharmaceutical Science 3 7%
Social Sciences 2 5%
Economics, Econometrics and Finance 2 5%
Other 5 12%
Unknown 15 35%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 April 2017.
All research outputs
#6,121,598
of 11,379,716 outputs
Outputs from BMC Research Notes
#903
of 2,477 outputs
Outputs of similar age
#113,337
of 265,881 outputs
Outputs of similar age from BMC Research Notes
#9
of 24 outputs
Altmetric has tracked 11,379,716 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,477 research outputs from this source. They receive a mean Attention Score of 4.6. This one has gotten more attention than average, scoring higher than 61% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,881 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.