↓ Skip to main content

A rapid and efficient method for uniform gene expression using the barley stripe mosaic virus

Overview of attention for article published in Plant Methods, April 2017
Altmetric Badge

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
49 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A rapid and efficient method for uniform gene expression using the barley stripe mosaic virus
Published in
Plant Methods, April 2017
DOI 10.1186/s13007-017-0175-5
Pubmed ID
Authors

Arnaud Cheuk, Mario Houde

Abstract

The barley stripe mosaic virus (BSMV) has become a popular vector to study gene function in cereals. However, studies have been limited to gene silencing in leaves of barley or wheat. In addition, the method produces high variability between different leaves and plants. To overcome these limitations, we explored the potential of modifying the inoculation protocol for BSMV gene overexpression. An improved light, oxygen or voltage-sensing (iLOV) domain-based fluorescent protein was used as a reporter of gene expression to monitor the infection and spread of BSMV. Tobacco (Nicotiana benthamiana) leaves were infected via agroinfiltration and the leaves were homogenized to extract the BSMV particles and inoculate wheat tissues using the traditional leaf abrasion method or by incubation during seed imbibition in a Petri dish. Compared to the leaf abrasion method, the seed imbibition method resulted in a high and uniform detection of iLOV in both roots and leaves of different wheat cultivars and other monocot and dicot species within 7 days after germination. The progression of viral infection via the imbibition method as measured by the expression of iLOV was more stable in different organs and tissues and is transmissible to the next generation. Our results show that BSMV can be used as a vector for the expression of small genes such as iLOV in wheat roots and leaves. The inoculation by seed imbibition allows genes to be expressed rapidly and uniformly in wheat and different monocot and dicot species compared to the traditional leaf abrasion method. It also produces high successful transformation as early as 7 days post infection allowing gene function studies during the first generation of infected plants. Furthermore, the method is simple, rapid, and inexpensive compared to the production of transgenic plants.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 49 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 18%
Researcher 8 16%
Student > Master 5 10%
Student > Postgraduate 3 6%
Student > Bachelor 2 4%
Other 4 8%
Unknown 18 37%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 41%
Biochemistry, Genetics and Molecular Biology 9 18%
Chemistry 1 2%
Unknown 19 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 April 2017.
All research outputs
#17,886,132
of 22,963,381 outputs
Outputs from Plant Methods
#905
of 1,086 outputs
Outputs of similar age
#221,349
of 310,118 outputs
Outputs of similar age from Plant Methods
#26
of 34 outputs
Altmetric has tracked 22,963,381 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,086 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,118 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.