↓ Skip to main content

Examining the role of macrolides and host immunity in combatting filarial parasites

Overview of attention for article published in Parasites & Vectors, April 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (64th percentile)
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

twitter
10 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Examining the role of macrolides and host immunity in combatting filarial parasites
Published in
Parasites & Vectors, April 2017
DOI 10.1186/s13071-017-2116-6
Pubmed ID
Authors

Doug S. Carithers

Abstract

Macrocyclic lactones (MLs), specifically the avermectins and milbemycins, are known for their effectiveness against a broad spectrum of disease-causing nematodes and arthropods in humans and animals. In most nematodes, drugs in this class induce paralysis, resulting in starvation, impaired ability to remain associated with their anatomical environment, and death of all life stages. Initially, this was also thought to be the ML mode of action against filarial nematodes, but researchers have not been able to validate these characteristic effects of immobilization/starvation of MLs in vitro, even at higher doses than are possible in vivo. Relatively recently, ML receptor sites exclusively located proximate to the excretory-secretory (ES) apparatus were identified in Brugia malayi microfilaria and an ML-induced suppression of secretory protein release by B. malayi microfilariae was demonstrated in vitro. It is hypothesized here that suppression of these ES proteins prevents the filarial worm from interfering with the host's complement cascade, reducing the ability of the parasite to evade the immune system. Live microfilariae and/or larvae, thus exposed, are attacked and presented to the host's innate immune mechanisms and are ultimately killed by the immune response, not the ML drug. These live, exposed filarial worms stimulate development of innate, cellular and humoral immune responses that when properly stimulated, are capable of clearing all larvae or microfilariae present in the host, regardless of their individual sensitivity to MLs. Additional research in this area can be expected to improve our understanding of the relationships among filarial worms, MLs, and the host immune system, which likely would have implications in filarial disease management in humans and animals.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 59 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 17%
Researcher 9 15%
Student > Master 7 12%
Student > Doctoral Student 5 8%
Student > Bachelor 3 5%
Other 9 15%
Unknown 16 27%
Readers by discipline Count As %
Medicine and Dentistry 10 17%
Veterinary Science and Veterinary Medicine 7 12%
Biochemistry, Genetics and Molecular Biology 7 12%
Agricultural and Biological Sciences 6 10%
Immunology and Microbiology 5 8%
Other 7 12%
Unknown 17 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 May 2017.
All research outputs
#6,850,250
of 22,963,381 outputs
Outputs from Parasites & Vectors
#1,555
of 5,485 outputs
Outputs of similar age
#108,446
of 308,964 outputs
Outputs of similar age from Parasites & Vectors
#48
of 157 outputs
Altmetric has tracked 22,963,381 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 5,485 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 308,964 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.
We're also able to compare this research output to 157 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.