↓ Skip to main content

Preliminary study of the UL55 gene based on infectious Chinese virulent duck enteritis virus bacterial artificial chromosome clone

Overview of attention for article published in Virology Journal, April 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Preliminary study of the UL55 gene based on infectious Chinese virulent duck enteritis virus bacterial artificial chromosome clone
Published in
Virology Journal, April 2017
DOI 10.1186/s12985-017-0748-y
Pubmed ID
Authors

Ying Wu, Yangguang Li, Mingshu Wang, Kunfeng Sun, Renyong Jia, Shun Chen, Dekang Zhu, Mafeng Liu, Qiao Yang, Xinxin Zhao, Xiaoyue Chen, Anchun Cheng

Abstract

Lethal Duck Enteritis Virus (DEV) infection can cause high morbidity and mortality of many species of waterfowl within the order Anseriformes. However, little is known about the function of viral genes including the conserved UL55 gene among alpha herpes virus due to the obstacles in maintenance and manipulation of DEV genome in host cells. In this paper, we constructed an infectious bacteria artificial chromosome (BAC) clone of the lethal clinical isolate duck enteritis virus Chinese virulent strain (DEV CHv) by inserting a transfer vector containing BAC mini-F sequence and selection marker EGFP into UL23 gene using homologous recombination. UL55 deletion and its revertant mutant were generated by two-step RED recombination in E. coli on basis of rescued recombinant virus. The function of UL55 gene in DEV replication and its effect on distribution of UL26.5 protein were carried out by growth characteristics and co-localization analysis. The complete genome of DEV CHv can be stably maintained in E. coli as a BAC clone and reconstituted again in DEF cells. The generated UL55 deletion mutant based on DEV CHv-BAC-G displayed similar growth curves, plaque morphology and virus titer of its parental virus in infected Duck Embryo Fibroblast (DEF) cells. Immunofluorescence assay indicated that the loss of UL55 gene do not affect the distribution of UL26.5 protein in intracellular. These data also suggest infectious BAC clone of DEV CHv will facilitate the gene function studies of DEV genome. We have successfully developed an infectious BAC clone of lethal clinical isolate DEV CHv for the first time. The generated UL55 gene mutant based on that demonstrated this platform would be a very useful tool for functional study of DEV genes. We found the least known DEV UL55 is dispensable for virus replication and UL26.5 distribution, and it could be a very promise candidate locus for developing bivalent vaccine. Experiment are now in progress for testifying the possibility of UL55 gene locus as an exogenous gene insertion site for developing DEV vectored vaccine.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Professor 3 38%
Student > Ph. D. Student 1 13%
Unknown 4 50%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 13%
Agricultural and Biological Sciences 1 13%
Immunology and Microbiology 1 13%
Unknown 5 63%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 April 2017.
All research outputs
#20,413,129
of 22,963,381 outputs
Outputs from Virology Journal
#2,892
of 3,057 outputs
Outputs of similar age
#270,123
of 310,038 outputs
Outputs of similar age from Virology Journal
#46
of 49 outputs
Altmetric has tracked 22,963,381 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,057 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,038 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 49 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.