↓ Skip to main content

Regional water footprints of potential biofuel production in China

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, April 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

blogs
2 blogs
policy
1 policy source
twitter
2 X users

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
77 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Regional water footprints of potential biofuel production in China
Published in
Biotechnology for Biofuels and Bioproducts, April 2017
DOI 10.1186/s13068-017-0778-0
Pubmed ID
Authors

Xiaomin Xie, Tingting Zhang, Liming Wang, Zhen Huang

Abstract

Development of biofuels is considered as one of the important ways to replace conventional fossil energy and mitigate climate change. However, rapid increase of biofuel production could cause other environmental concerns in China such as water stress. This study is intended to evaluate the life-cycle water footprints (WF) of biofuels derived from several potential non-edible feedstocks including cassava, sweet sorghum, and Jatropha curcas in China. Different water footprint types including blue water, green water, and grey water are considered in this study. Based on the estimated WF, water deprivation impact and water stress degree on local water environment are further analyzed for different regions in China. On the basis of the feedstock resource availability, sweet sorghum, cassava, and Jatropha curcas seeds are considered as the likely feedstocks for biofuel production in China. The water footprint results show that the feedstock growth is the most water footprint intensive process, while the biofuel conversion and transportation contribute little to total water footprints. Water footprints vary significantly by region with climate and soil variations. The life-cycle water footprints of cassava ethanol, sweet sorghum ethanol, and Jatropha curcas seeds biodiesel were estimated to be 73.9-222.2, 115.9-210.4, and 64.7-182.3 L of water per MJ of biofuel, respectively. Grey water footprint dominates the life-cycle water footprint for each type of the biofuels. Development of biofuels without careful water resource management will exert significant impacts on local water resources. The water resource impacts vary significantly among regions. For example, based on blue and grey water consumption, Gansu province in China will suffer much higher water stress than other regions do due to limited available water resources and large amount of fertilizer use in that province. In term of blue water, Shandong province is shown with the most severe water stress issue, followed by Gansu province, which is attributed to the limited water resources in both provinces. By considering feedstock resource distribution, biofuel production potentials, and estimated water footprints, this study provides insight into the impact of biofuel production on the local water environment in China. Biofuel development policies need to be carefully designed for the sustainable development of biofuels in China.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 77 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 77 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 18%
Student > Master 12 16%
Student > Bachelor 10 13%
Student > Doctoral Student 5 6%
Student > Ph. D. Student 5 6%
Other 12 16%
Unknown 19 25%
Readers by discipline Count As %
Engineering 10 13%
Environmental Science 9 12%
Agricultural and Biological Sciences 7 9%
Energy 5 6%
Chemical Engineering 5 6%
Other 21 27%
Unknown 20 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 18. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 December 2020.
All research outputs
#2,078,909
of 25,382,440 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#80
of 1,578 outputs
Outputs of similar age
#38,591
of 323,928 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#2
of 64 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,928 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 64 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.