↓ Skip to main content

Plasmodium infection and oxidative status in breeding great tits, Parus major

Overview of attention for article published in Malaria Journal, November 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Plasmodium infection and oxidative status in breeding great tits, Parus major
Published in
Malaria Journal, November 2016
DOI 10.1186/s12936-016-1579-9
Pubmed ID
Authors

Jessica Delhaye, Tania Jenkins, Philippe Christe

Abstract

Plasmodium parasites may affect the oxidative status of their hosts, defined as the balance of pro-oxidant compounds and antioxidant defences in an organism. An increased energy requirement, the activation of immune functions or the parasite itself may lead to a higher production of pro-oxidants and/or an antioxidant depletion resulting in a higher oxidative stress and associated damage in infected individuals. Relatively little is known about the mechanisms underlying oxidative processes at play during host-Plasmodium interaction in the wild. The effect of Plasmodium infection on host oxidative status was investigated in wild populations of breeding great tits, Parus major, naturally infected by Plasmodium spp. When chicks were 14 days old, the parents were blood-sampled to measure four complementary oxidative status markers: pro-oxidant production as mitochondrial superoxide production in red blood cells (RBC), antioxidant defences as plasma antioxidant capacity and oxidative damage as reactive oxygen metabolites in the plasma and RBC membrane resistance to oxidative attack. Plasmodium-infected individuals produced more pro-oxidants compared to uninfected ones and pro-oxidant production positively correlated to infection intensity. There was also a conditional effect of reproductive effort on oxidative damage depending on Plasmodium infection status. There was no direct effect of infection on oxidative damage and no effect on antioxidant defences. The results suggest that Plasmodium parasites may impose a cost in terms of increased oxidative stress possibly mediated via a higher energy requirement in infected hosts. This further suggests that Plasmodium parasites may modify host life history traits via an induction of oxidative stress. This study highlights that measuring several complementary oxidative status markers may enable to capture oxidative processes at play during host-Plasmodium interactions.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 58 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 13 22%
Student > Ph. D. Student 11 19%
Student > Bachelor 9 16%
Researcher 6 10%
Student > Doctoral Student 2 3%
Other 7 12%
Unknown 10 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 23 40%
Biochemistry, Genetics and Molecular Biology 6 10%
Environmental Science 4 7%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Medicine and Dentistry 2 3%
Other 6 10%
Unknown 15 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 May 2017.
All research outputs
#15,462,982
of 22,977,819 outputs
Outputs from Malaria Journal
#4,494
of 5,588 outputs
Outputs of similar age
#196,222
of 311,835 outputs
Outputs of similar age from Malaria Journal
#60
of 87 outputs
Altmetric has tracked 22,977,819 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,588 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,835 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 87 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.