↓ Skip to main content

New Olig1null mice confirm a non-essential role for Olig1 in oligodendrocyte development

Overview of attention for article published in BMC Neuroscience, January 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
New Olig1null mice confirm a non-essential role for Olig1 in oligodendrocyte development
Published in
BMC Neuroscience, January 2014
DOI 10.1186/1471-2202-15-12
Pubmed ID
Authors

Joana Paes de Faria, Nicoletta Kessaris, Paul Andrew, William D Richardson, Huiliang Li

Abstract

Olig1 and Olig2, encoding closely related basic helix-loop-helix transcription factors, were originally identified in screens for glial-specific genes. Olig1 and Olig2 are both expressed in restricted parts of the neuroepithelium of the embryonic spinal cord and telencephalon and subsequently in oligodendrocyte lineage cells throughout life. In the spinal cord, Olig2 plays a crucial role in the development of oligodendrocytes and motor neurons, and both cell types are lost from Olig2 null mutant mice. The role of Olig1 has been more cryptic. It was initially reported that Olig1 null mice (with a Cre-Pgk-Neo cassette at the Olig1 locus) have a mild developmental phenotype characterized by a slight delay in oligodendrocyte differentiation. However, a subsequent study of the same line following removal of Pgk-Neo (leaving Olig1-Cre) found severe disruption of oligodendrocyte production, myelination failure and early postnatal lethality. A plausible explanation was proposed, that the highly expressed Pgk-Neo cassette in the original line might have up-regulated the neighbouring Olig2 gene, compensating for loss of Olig1. However, this was not tested, so the importance of Olig1 for oligodendrocyte development has remained unclear.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Portugal 1 2%
Unknown 50 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 33%
Researcher 8 16%
Student > Bachelor 4 8%
Professor > Associate Professor 4 8%
Student > Master 4 8%
Other 9 18%
Unknown 5 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 43%
Biochemistry, Genetics and Molecular Biology 6 12%
Neuroscience 6 12%
Medicine and Dentistry 5 10%
Unspecified 1 2%
Other 4 8%
Unknown 7 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 January 2014.
All research outputs
#14,771,194
of 22,739,983 outputs
Outputs from BMC Neuroscience
#654
of 1,241 outputs
Outputs of similar age
#183,297
of 306,549 outputs
Outputs of similar age from BMC Neuroscience
#18
of 33 outputs
Altmetric has tracked 22,739,983 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,241 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 306,549 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.