↓ Skip to main content

GLADIATOR: a global approach for elucidating disease modules

Overview of attention for article published in Genome Medicine, May 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • Good Attention Score compared to outputs of the same age and source (73rd percentile)

Mentioned by

twitter
28 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
37 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
GLADIATOR: a global approach for elucidating disease modules
Published in
Genome Medicine, May 2017
DOI 10.1186/s13073-017-0435-z
Pubmed ID
Authors

Yael Silberberg, Martin Kupiec, Roded Sharan

Abstract

Understanding the genetic basis of disease is an important challenge in biology and medicine. The observation that disease-related proteins often interact with one another has motivated numerous network-based approaches for deciphering disease mechanisms. In particular, protein-protein interaction networks were successfully used to illuminate disease modules, i.e., interacting proteins working in concert to drive a disease. The identification of these modules can further our understanding of disease mechanisms. We devised a global method for the prediction of multiple disease modules simultaneously named GLADIATOR (GLobal Approach for DIsease AssociaTed mOdule Reconstruction). GLADIATOR relies on a gold-standard disease phenotypic similarity to obtain a pan-disease view of the underlying modules. To traverse the search space of potential disease modules, we applied a simulated annealing algorithm aimed at maximizing the correlation between module similarity and the gold-standard phenotypic similarity. Importantly, this optimization is employed over hundreds of diseases simultaneously. GLADIATOR's predicted modules highly agree with current knowledge about disease-related proteins. Furthermore, the modules exhibit high coherence with respect to functional annotations and are highly enriched with known curated pathways, outperforming previous methods. Examination of the predicted proteins shared by similar diseases demonstrates the diverse role of these proteins in mediating related processes across similar diseases. Last, we provide a detailed analysis of the suggested molecular mechanism predicted by GLADIATOR for hyperinsulinism, suggesting novel proteins involved in its pathology. GLADIATOR predicts disease modules by integrating knowledge of disease-related proteins and phenotypes across multiple diseases. The predicted modules are functionally coherent and are more in line with current biological knowledge compared to modules obtained using previous disease-centric methods. The source code for GLADIATOR can be downloaded from http://www.cs.tau.ac.il/~roded/GLADIATOR.zip .

X Demographics

X Demographics

The data shown below were collected from the profiles of 28 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 32%
Student > Ph. D. Student 8 22%
Professor 4 11%
Student > Master 4 11%
Student > Bachelor 3 8%
Other 3 8%
Unknown 3 8%
Readers by discipline Count As %
Computer Science 12 32%
Biochemistry, Genetics and Molecular Biology 10 27%
Agricultural and Biological Sciences 4 11%
Medicine and Dentistry 2 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 3 8%
Unknown 5 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 15. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 September 2017.
All research outputs
#2,227,851
of 24,286,850 outputs
Outputs from Genome Medicine
#486
of 1,500 outputs
Outputs of similar age
#41,743
of 316,998 outputs
Outputs of similar age from Genome Medicine
#9
of 30 outputs
Altmetric has tracked 24,286,850 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,500 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 26.6. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,998 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.