↓ Skip to main content

Reduced quality and accelerated follicle loss with female reproductive aging - does decline in theca dehydroepiandrosterone (DHEA) underlie the problem?

Overview of attention for article published in Journal of Biomedical Science, December 2013
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

news
1 news outlet
facebook
1 Facebook page

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Reduced quality and accelerated follicle loss with female reproductive aging - does decline in theca dehydroepiandrosterone (DHEA) underlie the problem?
Published in
Journal of Biomedical Science, December 2013
DOI 10.1186/1423-0127-20-93
Pubmed ID
Authors

Judith H Ford

Abstract

Infertility, spontaneous abortion and conception of trisomic offspring increase exponentially with age in mammals but in women there is an apparent acceleration in the rate from about age 37. The problems mostly commonly occur when the ovarian pool of follicles is depleted to a critical level with age but are also found in low follicular reserve of other etiologies. Since recent clinical studies have indicated that dehydroepiandrosterone (DHEA) supplementation may reverse the problem of oocyte quality, this review of the literature was undertaken in an attempt to find an explanation of why this is effective? In affected ovaries, oxygenation of follicular fluid is low, ultrastructural disturbances especially of mitochondria, occur in granulosa cells and oocytes, and considerable disturbances of meiosis occur. There is, however, no evidence to date that primordial follicles are compromised. In females with normal fertility, pre-antral ovarian theca cells respond to stimulation by inhibin B to provide androgen-based support for the developing follicle. With depletion of follicle numbers, inhibin B is reduced with consequent reduction in theca DHEA. Theca cells are the sole ovarian site of synthesis of DHEA, which is both a precursor of androstenedione and an essential ligand for peroxisome proliferator-activated receptor alpha (PPARα), the key promoter of genes affecting fatty acid metabolism and fat transport and genes critical to mitochondrial function. As well as inducing a plethora of deleterious changes in follicular cytoplasmic structure and function, the omega 9 palmitate/oleate ratio is increased by lowered activity of PPARα. This provides conditions for increased ceramide synthesis and follicular loss through ceramide-induced apoptosis is accelerated. In humans critical theca DHEA synthesis occurs at about 70 days prior to ovulation thus effective supplementation needs to be undertaken about four months prior to intended conception; timing which is also suggested by successful interventions to date. In humans and primates that undergo adrenarche, the adrenal zona reticularis (ZR) is the major site of DHEA production, however this is also reduced with age. Concomitant loss in function of the ZR might account for the acceleration in the rate of aging seen in humans in the late thirties' age group.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Poland 1 2%
Germany 1 2%
Australia 1 2%
Unknown 38 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 24%
Other 6 15%
Researcher 6 15%
Student > Bachelor 5 12%
Student > Master 4 10%
Other 6 15%
Unknown 4 10%
Readers by discipline Count As %
Medicine and Dentistry 15 37%
Agricultural and Biological Sciences 11 27%
Biochemistry, Genetics and Molecular Biology 6 15%
Nursing and Health Professions 2 5%
Social Sciences 2 5%
Other 2 5%
Unknown 3 7%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 April 2015.
All research outputs
#4,261,355
of 25,373,627 outputs
Outputs from Journal of Biomedical Science
#181
of 1,101 outputs
Outputs of similar age
#46,848
of 320,425 outputs
Outputs of similar age from Journal of Biomedical Science
#3
of 11 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,101 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,425 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.