↓ Skip to main content

The development and use of a molecular model for soybean maturity groups

Overview of attention for article published in BMC Plant Biology, May 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
47 Dimensions

Readers on

mendeley
83 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The development and use of a molecular model for soybean maturity groups
Published in
BMC Plant Biology, May 2017
DOI 10.1186/s12870-017-1040-4
Pubmed ID
Authors

Tiffany Langewisch, Julian Lenis, Guo-Liang Jiang, Dechun Wang, Vince Pantalone, Kristin Bilyeu

Abstract

Achieving appropriate maturity in a target environment is essential to maximizing crop yield potential. In soybean [Glycine max (L.) Merr.], the time to maturity is largely dependent on developmental response to dark periods. Once the critical photoperiod is reached, flowering is initiated and reproductive development proceeds. Therefore, soybean adaptation has been attributed to genetic changes and natural or artificial selection to optimize plant development in specific, narrow latitudinal ranges. In North America, these regions have been classified into twelve maturity groups (MG), with lower MG being shorter season than higher MG. Growing soybean lines not adapted to a particular environment typically results in poor growth and significant yield reductions. The objective of this study was to develop a molecular model for soybean maturity based on the alleles underlying the major maturity loci: E1, E2, and E3. We determined the allelic variation and diversity of the E maturity genes in a large collection of soybean landraces, North American ancestors, Chinese cultivars, North American cultivars or expired Plant Variety Protection lines, and private-company lines. The E gene status of accessions in the USDA Soybean Germplasm Collection with SoySNP50K Beadchip data was also predicted. We determined the E allelic combinations needed to adapt soybean to different MGs in the United States (US) and discovered a strong signal of selection for E genotypes released in North America, particularly the US and Canada. The E gene maturity model proposed will enable plant breeders to more effectively transfer traits into different MGs and increase the overall efficiency of soybean breeding in the US and Canada. The powerful yet simple selection strategy for increasing soybean breeding efficiency can be used alone or to directly enhance genomic prediction/selection schemes. The results also revealed previously unrecognized aspects of artificial selection in soybean imposed by soybean breeders based on geography that highlights the need for plant breeding that is optimized for specific environments.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 83 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 83 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 24%
Student > Master 15 18%
Researcher 9 11%
Student > Doctoral Student 5 6%
Student > Bachelor 4 5%
Other 12 14%
Unknown 18 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 44 53%
Biochemistry, Genetics and Molecular Biology 7 8%
Engineering 4 5%
Business, Management and Accounting 2 2%
Unspecified 2 2%
Other 6 7%
Unknown 18 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 June 2017.
All research outputs
#15,462,982
of 22,977,819 outputs
Outputs from BMC Plant Biology
#1,496
of 3,277 outputs
Outputs of similar age
#198,644
of 316,100 outputs
Outputs of similar age from BMC Plant Biology
#16
of 38 outputs
Altmetric has tracked 22,977,819 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,277 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,100 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.