↓ Skip to main content

Autoimmune antibody decline in Parkinson’s disease and Multiple System Atrophy; a step towards immunotherapeutic strategies

Overview of attention for article published in Molecular Neurodegeneration, June 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

news
2 news outlets
twitter
2 X users

Citations

dimensions_citation
47 Dimensions

Readers on

mendeley
77 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Autoimmune antibody decline in Parkinson’s disease and Multiple System Atrophy; a step towards immunotherapeutic strategies
Published in
Molecular Neurodegeneration, June 2017
DOI 10.1186/s13024-017-0187-7
Pubmed ID
Authors

Tomasz Brudek, Kristian Winge, Jonas Folke, Søren Christensen, Karina Fog, Bente Pakkenberg, Lars Østergaard Pedersen

Abstract

Parkinson's' disease (PD) and Multiple System Atrophy (MSA) are progressive brain disorders characterized by intracellular accumulations of α-synuclein and nerve cell loss in specific brain areas. This loss causes problems with movement, balance and/or autonomic functions. Naturally occurring autoantibodies (NAbs) play potentially an important role in clearing or/and blocking circulating pathological proteins. Little is known about the functional properties of anti-α-synuclein NAbs in PD and MSA, and there have been opposing reports regarding their plasma concentrations in these disorders. We have investigated the apparent affinity of anti-α-synuclein NAbs in plasma samples from 46 PD patients, 18 MSA patients and 41 controls using competitive enzyme-linked immunosorbent assay (ELISA) and Meso Scale Discovery (MSD) set-ups. We found that the occurrence of high affinity anti-α-synuclein NAbs in plasma from PD patients is reduced compared to healthy controls, and nearly absent in plasma from MSA patients. Also, levels of α-synuclein/NAbs immunocomplexes is substantially reduced in plasma from both patient groups. Further, cross binding of anti-α-synuclein NAbs with β- and γ-synuclein monomers suggest, the high affinity anti-α-synuclein plasma component, seen in healthy individuals, is directed mainly against C-terminal epitopes. Furthermore, we also observed reduced occurrence of high affinity anti-phosphorylated-α-synuclein NAbs in plasma from PD and MSA patients. One interpretation implies that these patients may have impaired ability to clear and/or block the effects of pathological α-synuclein due to insufficient/absent concentration of NAbs and as such provides a rationale for testing immune-based therapeutic strategies directed against pathological α-synuclein. Following this interpretation, we can hypothesize that high affinity autoantibodies efficiently bind and clear potentially pathological species of α-synuclein in healthy brain, and that this mechanism is impaired or absent in PD and MSA patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 77 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 77 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 17 22%
Student > Ph. D. Student 11 14%
Researcher 11 14%
Student > Master 8 10%
Other 3 4%
Other 6 8%
Unknown 21 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 16%
Neuroscience 12 16%
Agricultural and Biological Sciences 8 10%
Medicine and Dentistry 6 8%
Immunology and Microbiology 3 4%
Other 12 16%
Unknown 24 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 17. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 March 2020.
All research outputs
#1,838,149
of 22,979,862 outputs
Outputs from Molecular Neurodegeneration
#173
of 852 outputs
Outputs of similar age
#37,976
of 317,348 outputs
Outputs of similar age from Molecular Neurodegeneration
#5
of 25 outputs
Altmetric has tracked 22,979,862 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 852 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.3. This one has done well, scoring higher than 79% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,348 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.