↓ Skip to main content

Correlation between Hox code and vertebral morphology in the mouse: towards a universal model for Synapsida

Overview of attention for article published in Zoological Letters, June 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (72nd percentile)

Mentioned by

twitter
10 X users
facebook
2 Facebook pages

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Correlation between Hox code and vertebral morphology in the mouse: towards a universal model for Synapsida
Published in
Zoological Letters, June 2017
DOI 10.1186/s40851-017-0069-4
Pubmed ID
Authors

Christine Böhmer

Abstract

The importance of the cervical vertebrae as part of the skull-neck system in facilitating the success and diversity of tetrapods is clear. The reconstruction of its evolution, however, is problematic because of the variation in the number of vertebrae, making it difficult to identify homologous elements. Quantification of the morphological differentiation in the neck of diverse archosaurs established homologous units of vertebrae (i.e. modules) resulting from Hox gene expression patterns within the cervical vertebral column. The present study aims to investigate the modularity of the cervical vertebral column in the mouse and to reveal the genetic patterns and changes underlying the evolution of the neck of modern mammals and their extinct relatives. In contrast to modern mammals, non-mammalian synapsids are characterized by a variable cervical count, the presence of free cervical ribs and the presence of a separate CV1 centrum. How might these evolutionary modifications be associated with changes in the Hox code? In combination with up-to-date information on cervical Hox gene expression including description of the vertebral phenotype of Hox knock-out mutants, the 3D landmark-based geometric morphometric approach demonstrates a correlation between Hox code and vertebral morphology in the mouse. There is evidence that the modularity of the neck of the mouse had already been established in the last common ancestor of mammals, but differed from that of non-mammalian synapsids. The differences that likely occurred during the evolution of synapsids include an anterior shift in HoxA-5 expression in relation to the reduction of cervical ribs and an anterior shift in HoxD-4 expression linked to the development of the highly differentiated atlas-axis complex, whereas the remaining Hox genes may have displayed a pattern similar to that in mammals on the basis of the high level of conservatism in the axial skeleton of this lineage. Thus, the mouse Hox code provides a model for understanding the evolutionary mechanisms responsible for the great morphological adaptability of the cervical vertebral column in Synapsida. However, more studies in non-model organisms are required to further elucidate the evolutionary role of Hox genes in axial patterning of the unique mammalian body plan.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 22%
Student > Ph. D. Student 8 22%
Student > Bachelor 6 16%
Student > Master 3 8%
Other 2 5%
Other 4 11%
Unknown 6 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 30%
Earth and Planetary Sciences 8 22%
Biochemistry, Genetics and Molecular Biology 6 16%
Environmental Science 1 3%
Immunology and Microbiology 1 3%
Other 1 3%
Unknown 9 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 November 2017.
All research outputs
#6,284,019
of 25,587,485 outputs
Outputs from Zoological Letters
#81
of 185 outputs
Outputs of similar age
#91,867
of 332,190 outputs
Outputs of similar age from Zoological Letters
#4
of 4 outputs
Altmetric has tracked 25,587,485 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 185 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 18.0. This one has gotten more attention than average, scoring higher than 56% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,190 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one.