↓ Skip to main content

Management of enzyme diversity in high-performance cellulolytic cocktails

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, June 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Management of enzyme diversity in high-performance cellulolytic cocktails
Published in
Biotechnology for Biofuels and Bioproducts, June 2017
DOI 10.1186/s13068-017-0845-6
Pubmed ID
Authors

Francisco Manuel Reyes-Sosa, Macarena López Morales, Ana Isabel Platero Gómez, Noelia Valbuena Crespo, Laura Sánchez Zamorano, Javier Rocha-Martín, Fernando P. Molina-Heredia, Bruno Díez García

Abstract

Modern biorefineries require enzymatic cocktails of improved efficiency to generate fermentable sugars from lignocellulosic biomass. Cellulolytic fungi, among other microorganisms, have demonstrated the highest potential in terms of enzymatic productivity, complexity and efficiency. On the other hand, under cellulolytic-inducing conditions, they often produce a considerable diversity of carbohydrate-active enzymes which allow them to adapt to changing environmental conditions. However, industrial conditions are fixed and adjusted to the optimum of the whole cocktail, resulting in underperformance of individual enzymes. One of these cellulolytic cocktails from Myceliophthora thermophila has been analyzed here by means of LC-MS/MS. Pure GH6 family members detected have been characterized, confirming previous studies, and added to whole cocktails to compare their contribution in the hydrolysis of industrial substrates. Finally, independent deletions of two GH6 family members, as an example of the enzymatic diversity management, led to the development of a strain producing a more efficient cellulolytic cocktail. These data indicate that the deletion of noncontributive cellulases (here EG VI) can increase the cellulolytic efficiency of the cocktail, validating the management of cellulase diversity as a strategy to obtain improved fungal cellulolytic cocktails.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Thailand 1 2%
Unknown 50 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 18%
Student > Ph. D. Student 8 16%
Student > Bachelor 6 12%
Student > Master 5 10%
Student > Doctoral Student 4 8%
Other 10 20%
Unknown 9 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 19 37%
Agricultural and Biological Sciences 12 24%
Engineering 3 6%
Environmental Science 1 2%
Business, Management and Accounting 1 2%
Other 3 6%
Unknown 12 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 June 2017.
All research outputs
#15,173,117
of 25,382,440 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#790
of 1,578 outputs
Outputs of similar age
#172,177
of 329,774 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#32
of 59 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,774 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 59 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.