↓ Skip to main content

Plant manipulation through gall formation constrains amino acid transporter evolution in sap-feeding insects

Overview of attention for article published in BMC Evolutionary Biology, June 2017
Altmetric Badge

Mentioned by

twitter
2 tweeters

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Plant manipulation through gall formation constrains amino acid transporter evolution in sap-feeding insects
Published in
BMC Evolutionary Biology, June 2017
DOI 10.1186/s12862-017-1000-5
Pubmed ID
Authors

Chaoyang Zhao, Paul D. Nabity

Abstract

The herbivore lifestyle leads to encounters with plant toxins and requires mechanisms to overcome suboptimal nutrient availability in plant tissues. Although the evolution of bacterial endosymbiosis alleviated many of these challenges, the ability to manipulate plant nutrient status has evolved in lineages with and without nutritional symbionts. Whether and how these alternative nutrient acquisition strategies interact or constrain insect evolution is unknown. We studied the transcriptomes of galling and free-living aphidomorphs to characterize how amino acid transporter evolution is influenced by the ability to manipulate plant resource availability. Using a comparative approach we found phylloxerids retain nearly all amino acid transporters as other aphidomorphs, despite loss of nutritional endosymbiosis. Free living species show more transporters than galling species within the same genus, family, or infraorder, indicating plant hosts influence the maintenance and evolution of nutrient transport within herbivores. Transcript profiles also show lineage specificity and suggest some genes may facilitate life without endosymbionts or the galling lifestyle. The transcript abundance profiles we document across fluid feeding herbivores support plant host constraint on insect amino acid transporter evolution. Given amino acid uptake, transport, and catabolism underlie the success of herbivory as a life history strategy, this suggests that plant host nutrient quality, whether constitutive or induced, alters the selective environment surrounding the evolution and maintenance of endosymbiosis.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 23%
Researcher 4 18%
Student > Master 2 9%
Professor 2 9%
Student > Doctoral Student 1 5%
Other 3 14%
Unknown 5 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 41%
Biochemistry, Genetics and Molecular Biology 3 14%
Environmental Science 1 5%
Medicine and Dentistry 1 5%
Unknown 8 36%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 June 2017.
All research outputs
#8,789,047
of 11,410,328 outputs
Outputs from BMC Evolutionary Biology
#1,870
of 2,213 outputs
Outputs of similar age
#173,697
of 261,204 outputs
Outputs of similar age from BMC Evolutionary Biology
#44
of 48 outputs
Altmetric has tracked 11,410,328 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,213 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.9. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 261,204 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one is in the 4th percentile – i.e., 4% of its contemporaries scored the same or lower than it.