↓ Skip to main content

Vertical leaping mechanics of the Lesser Egyptian Jerboa reveal specialization for maneuverability rather than elastic energy storage

Overview of attention for article published in Frontiers in Zoology, July 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

blogs
1 blog
twitter
16 X users
facebook
1 Facebook page
wikipedia
4 Wikipedia pages

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Vertical leaping mechanics of the Lesser Egyptian Jerboa reveal specialization for maneuverability rather than elastic energy storage
Published in
Frontiers in Zoology, July 2017
DOI 10.1186/s12983-017-0215-z
Pubmed ID
Authors

Talia Y. Moore, Alberto M. Rivera, Andrew A. Biewener

Abstract

Numerous historical descriptions of the Lesser Egyptian jerboa, Jaculus jaculus, a small bipedal mammal with elongate hindlimbs, make special note of their extraordinary leaping ability. We observed jerboa locomotion in a laboratory setting and performed inverse dynamics analysis to understand how this small rodent generates such impressive leaps. We combined kinematic data from video, kinetic data from a force platform, and morphometric data from dissections to calculate the relative contributions of each hindlimb muscle and tendon to the total movement. Jerboas leapt in excess of 10 times their hip height. At the maximum recorded leap height (not the maximum observed leap height), peak moments for metatarso-phalangeal, ankle, knee, and hip joints were 13.1, 58.4, 65.1, and 66.9 Nmm, respectively. Muscles acting at the ankle joint contributed the most work (mean 231.6 mJ / kg Body Mass) to produce the energy of vertical leaping, while muscles acting at the metatarso-phalangeal joint produced the most stress (peak 317.1 kPa). The plantaris, digital flexors, and gastrocnemius tendons encountered peak stresses of 25.6, 19.1, and 6.0 MPa, respectively, transmitting the forces of their corresponding muscles (peak force 3.3, 2.0, and 3.8 N, respectively). Notably, we found that the mean elastic energy recovered in the primary tendons of both hindlimbs comprised on average only 4.4% of the energy of the associated leap. The limited use of tendon elastic energy storage in the jerboa parallels the morphologically similar heteromyid kangaroo rat, Dipodomys spectabilis. When compared to larger saltatory kangaroos and wallabies that sustain hopping over longer periods of time, these small saltatory rodents store and recover less elastic strain energy in their tendons. The large contribution of muscle work, rather than elastic strain energy, to the vertical leap suggests that the fitness benefit of rapid acceleration for predator avoidance dominated over the need to enhance locomotor economy in the evolutionary history of jerboas.

X Demographics

X Demographics

The data shown below were collected from the profiles of 16 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 57 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 14 25%
Student > Ph. D. Student 12 21%
Researcher 5 9%
Student > Bachelor 4 7%
Other 3 5%
Other 8 14%
Unknown 11 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 21%
Engineering 11 19%
Sports and Recreations 4 7%
Medicine and Dentistry 3 5%
Environmental Science 2 4%
Other 9 16%
Unknown 16 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 19. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 April 2023.
All research outputs
#1,938,562
of 25,571,620 outputs
Outputs from Frontiers in Zoology
#116
of 700 outputs
Outputs of similar age
#36,357
of 326,604 outputs
Outputs of similar age from Frontiers in Zoology
#4
of 16 outputs
Altmetric has tracked 25,571,620 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 700 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.9. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,604 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.