↓ Skip to main content

Genome-wide search for Zelda-like chromatin signatures identifies GAF as a pioneer factor in early fly development

Overview of attention for article published in Epigenetics & Chromatin, July 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

twitter
22 X users
facebook
1 Facebook page

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
72 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide search for Zelda-like chromatin signatures identifies GAF as a pioneer factor in early fly development
Published in
Epigenetics & Chromatin, July 2017
DOI 10.1186/s13072-017-0141-5
Pubmed ID
Authors

Arbel Moshe, Tommy Kaplan

Abstract

The protein Zelda was shown to play a key role in early Drosophila development, binding thousands of promoters and enhancers prior to maternal-to-zygotic transition (MZT), and marking them for transcriptional activation. Recently, we showed that Zelda acts through specific chromatin patterns of histone modifications to mark developmental enhancers and active promoters. Intriguingly, some Zelda sites still maintain these chromatin patterns in Drosophila embryos lacking maternal Zelda protein. This suggests that additional Zelda-like pioneer factors may act in early fly embryos. We developed a computational method to analyze and refine the chromatin landscape surrounding early Zelda peaks, using a multichannel spectral clustering. This allowed us to characterize their chromatin patterns through MZT (mitotic cycles 8-14). Specifically, we focused on H3K4me1, H3K4me3, H3K18ac, H3K27ac, and H3K27me3 and identified three different classes of chromatin signatures, matching "promoters," "enhancers" and "transiently bound" Zelda peaks. We then further scanned the genome using these chromatin patterns and identified additional loci-with no Zelda binding-that show similar chromatin patterns, resulting with hundreds of Zelda-independent putative enhancers. These regions were found to be enriched with GAGA factor (GAF, Trl) and are typically located near early developmental zygotic genes. Overall our analysis suggests that GAF, together with Zelda, plays an important role in activating the zygotic genome. As we show, our computational approach offers an efficient algorithm for characterizing chromatin signatures around some loci of interest and allows a genome-wide identification of additional loci with similar chromatin patterns.

X Demographics

X Demographics

The data shown below were collected from the profiles of 22 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 72 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 25 35%
Student > Bachelor 13 18%
Researcher 8 11%
Student > Doctoral Student 4 6%
Student > Postgraduate 2 3%
Other 7 10%
Unknown 13 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 40 56%
Agricultural and Biological Sciences 14 19%
Unspecified 1 1%
Computer Science 1 1%
Physics and Astronomy 1 1%
Other 1 1%
Unknown 14 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 November 2017.
All research outputs
#2,870,896
of 25,621,213 outputs
Outputs from Epigenetics & Chromatin
#88
of 617 outputs
Outputs of similar age
#51,178
of 326,747 outputs
Outputs of similar age from Epigenetics & Chromatin
#2
of 12 outputs
Altmetric has tracked 25,621,213 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 617 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,747 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.