↓ Skip to main content

Metabolic engineering of Escherichia coli for production of n-butanol from crude glycerol

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, July 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

news
1 news outlet
blogs
1 blog
twitter
1 X user
peer_reviews
1 peer review site

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
79 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Metabolic engineering of Escherichia coli for production of n-butanol from crude glycerol
Published in
Biotechnology for Biofuels and Bioproducts, July 2017
DOI 10.1186/s13068-017-0857-2
Pubmed ID
Authors

Mukesh Saini, Ze Win Wang, Chung-Jen Chiang, Yun-Peng Chao

Abstract

Crude glycerol in the waste stream of the biodiesel production process is an abundant and renewable resource. However, the glycerol-based industry is usually afflicted by the cost for refinement of crude glycerol. This issue can be addressed by developing a microbial process to convert crude glycerol to value-added chemicals. In this study, Escherichia coli was implemented for the production of n-butanol based on the reduced nature of glycerol. The central metabolism of E. coli was rewired to improve the efficiency of glycerol metabolism and provide the reductive need for n-butanol in E. coli. This was carried out in several steps by (1) forcing the glycolytic flux through the oxidation pathway of pyruvate, (2) directing the gluconeogenic flux into the oxidative pentose phosphate pathway, (3) enhancing the anaerobic catabolism for glycerol, and (4) moderately suppressing the tricarboxylic acid cycle. Under the microaerobic condition, the engineered strain enabled the production of 6.9 g/L n-butanol from 20 g/L crude glycerol. The conversion yield and the productivity reach 87% of the theoretical yield and 0.18 g/L/h, respectively. The approach by rational rewiring of metabolic pathways enables E. coli to synthesize n-butanol from glycerol in an efficient way. Our proposed strategies illustrate the feasibility of manipulating key metabolic nodes at the junction of the central catabolism. As a result, it renders the intracellular redox state adjustable for various purposes. Overall, the developed technology platform may be useful for the economic viability of the glycerol-related industry.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 79 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 79 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 20%
Student > Bachelor 13 16%
Researcher 12 15%
Student > Master 9 11%
Student > Doctoral Student 5 6%
Other 8 10%
Unknown 16 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 24 30%
Engineering 11 14%
Agricultural and Biological Sciences 11 14%
Chemical Engineering 7 9%
Environmental Science 3 4%
Other 6 8%
Unknown 17 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 18. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 June 2020.
All research outputs
#2,009,848
of 25,382,440 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#72
of 1,578 outputs
Outputs of similar age
#37,814
of 326,085 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#4
of 51 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,085 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.