↓ Skip to main content

Identification and characterization of a FOXA2-regulated transcriptional enhancer at a type 2 diabetes intronic locus that controls GCKR expression in liver cells

Overview of attention for article published in Genome Medicine, July 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)

Mentioned by

twitter
11 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification and characterization of a FOXA2-regulated transcriptional enhancer at a type 2 diabetes intronic locus that controls GCKR expression in liver cells
Published in
Genome Medicine, July 2017
DOI 10.1186/s13073-017-0453-x
Pubmed ID
Authors

Maykel López Rodríguez, Dorota Kaminska, Kati Lappalainen, Jussi Pihlajamäki, Minna U. Kaikkonen, Markku Laakso

Abstract

Genome-wide association studies (GWAS) have identified more than 100 genetic loci associated with type 2 diabetes (T2D). However, the underlying biological mechanisms for many of these associations remain unknown. GWAS signals close to the glucokinase regulatory protein gene (GCKR) have been reported for lipid and glucose metabolism traits and the risk of T2D. We investigated the regulatory function of an intronic locus at GCKR represented by the lead single nucleotide polymorphism (SNP) rs780094. We used ENCODE project histone modification and transcription factor binding data to determine the regulatory features of a GCKR intronic locus formed by the high linkage disequilibrium rs780094(C/T), rs780095(G/A), and rs780096(G/C) SNPs. Characterization of the transcriptional activity of this region was assessed by luciferase reporter assays in HepG2 cells and mouse primary hepatocytes. ChIP-qPCR was used to determine the levels of haplotype specific transcription factor binding and histone marks. A CRISPR-dCas9 transcriptional activator system and qPCR were used to activate the locus and measure GCKR expression, respectively. Differential haplotype expression was measured from human liver biopsies. The ENCODE data suggest the existence of a liver-specific intragenic enhancer at the locus represented by s780094. We observed that FOXA2 increased the transcriptional activity of this region in a haplotype specific way (CGG > TAC; rs780094, rs780095, and rs780096). In addition, the CGG haplotype showed higher binding to FOXA2 and higher levels of the H3K27Ac histone mark. The epigenetic activation of this locus increased the expression of endogenous GCKR in HepG2 cells, confirming that GCKR is the direct target gene of the enhancer. Finally, we confirmed that the CGG haplotype exhibits higher levels of transcription in human liver. Our results demonstrate the existence of a liver-specific FOXA2-regulated transcriptional enhancer at an intronic T2D locus represented by rs780094, rs780095, and rs780096 SNPs that increases GCKR expression. Differential haplotype regulation suggests the existence of cis regulatory effects that may contribute to the associated traits at this locus.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 8 27%
Student > Ph. D. Student 5 17%
Other 3 10%
Researcher 3 10%
Student > Doctoral Student 2 7%
Other 3 10%
Unknown 6 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 33%
Agricultural and Biological Sciences 8 27%
Medicine and Dentistry 3 10%
Business, Management and Accounting 1 3%
Unspecified 1 3%
Other 1 3%
Unknown 6 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 January 2018.
All research outputs
#4,639,361
of 22,986,950 outputs
Outputs from Genome Medicine
#886
of 1,445 outputs
Outputs of similar age
#81,142
of 313,520 outputs
Outputs of similar age from Genome Medicine
#24
of 32 outputs
Altmetric has tracked 22,986,950 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,445 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.8. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,520 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.