↓ Skip to main content

Arete – candidate gene prioritization using biological network topology with additional evidence types

Overview of attention for article published in BioData Mining, July 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Arete – candidate gene prioritization using biological network topology with additional evidence types
Published in
BioData Mining, July 2017
DOI 10.1186/s13040-017-0141-9
Pubmed ID
Authors

Artem Lysenko, Keith Anthony Boroevich, Tatsuhiko Tsunoda

Abstract

Refinement of candidate gene lists to select the most promising candidates for further experimental verification remains an essential step between high-throughput exploratory analysis and the discovery of specific causal genes. Given the qualitative and semantic complexity of biological data, successfully addressing this challenge requires development of flexible and interoperable solutions for making the best possible use of the largest possible fraction of all available data. We have developed an easily accessible framework that links two established network-based gene prioritization approaches with a supporting isolation forest-based integrative ranking method. The defining feature of the method is that both topological information of the biological networks and additional sources of evidence can be considered at the same time. The implementation was realized as an app extension for the Cytoscape graph analysis suite, and therefore can further benefit from the synergy with other analysis methods available as part of this system. We provide efficient reference implementations of two popular gene prioritization algorithms - DIAMOnD and random walk with restart for the Cytoscape system. An extension of those methods was also developed that allows outputs of these algorithms to be combined with additional data. To demonstrate the utility of our software, we present two example disease gene prioritization application cases and show how our tool can be used to evaluate these different approaches.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 19%
Student > Master 4 13%
Researcher 4 13%
Student > Bachelor 2 6%
Professor 2 6%
Other 4 13%
Unknown 9 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 23%
Agricultural and Biological Sciences 6 19%
Computer Science 2 6%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Mathematics 1 3%
Other 4 13%
Unknown 10 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 July 2017.
All research outputs
#14,072,172
of 22,988,380 outputs
Outputs from BioData Mining
#199
of 309 outputs
Outputs of similar age
#168,649
of 313,513 outputs
Outputs of similar age from BioData Mining
#9
of 13 outputs
Altmetric has tracked 22,988,380 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 309 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.7. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,513 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.