↓ Skip to main content

Predictive models for pressure ulcers from intensive care unit electronic health records using Bayesian networks

Overview of attention for article published in BMC Medical Informatics and Decision Making, July 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
59 Dimensions

Readers on

mendeley
161 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Predictive models for pressure ulcers from intensive care unit electronic health records using Bayesian networks
Published in
BMC Medical Informatics and Decision Making, July 2017
DOI 10.1186/s12911-017-0471-z
Pubmed ID
Authors

Pacharmon Kaewprag, Cheryl Newton, Brenda Vermillion, Sookyung Hyun, Kun Huang, Raghu Machiraju

Abstract

We develop predictive models enabling clinicians to better understand and explore patient clinical data along with risk factors for pressure ulcers in intensive care unit patients from electronic health record data. Identifying accurate risk factors of pressure ulcers is essential to determining appropriate prevention strategies; in this work we examine medication, diagnosis, and traditional Braden pressure ulcer assessment scale measurements as patient features. In order to predict pressure ulcer incidence and better understand the structure of related risk factors, we construct Bayesian networks from patient features. Bayesian network nodes (features) and edges (conditional dependencies) are simplified with statistical network techniques. Upon reviewing a network visualization of our model, our clinician collaborators were able to identify strong relationships between risk factors widely recognized as associated with pressure ulcers. We present a three-stage framework for predictive analysis of patient clinical data: 1) Developing electronic health record feature extraction functions with assistance of clinicians, 2) simplifying features, and 3) building Bayesian network predictive models. We evaluate all combinations of Bayesian network models from different search algorithms, scoring functions, prior structure initializations, and sets of features. From the EHRs of 7,717 ICU patients, we construct Bayesian network predictive models from 86 medication, diagnosis, and Braden scale features. Our model not only identifies known and suspected high PU risk factors, but also substantially increases sensitivity of the prediction - nearly three times higher comparing to logistical regression models - without sacrificing the overall accuracy. We visualize a representative model with which our clinician collaborators identify strong relationships between risk factors widely recognized as associated with pressure ulcers. Given the strong adverse effect of pressure ulcers on patients and the high cost for treating pressure ulcers, our Bayesian network based model provides a novel framework for significantly improving the sensitivity of the prediction model. Thus, when the model is deployed in a clinical setting, the caregivers can suitably respond to conditions likely associated with pressure ulcer incidence.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 161 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 161 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 21 13%
Researcher 17 11%
Student > Bachelor 14 9%
Student > Ph. D. Student 12 7%
Unspecified 9 6%
Other 33 20%
Unknown 55 34%
Readers by discipline Count As %
Medicine and Dentistry 25 16%
Nursing and Health Professions 22 14%
Engineering 12 7%
Computer Science 9 6%
Unspecified 8 5%
Other 24 15%
Unknown 61 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 July 2017.
All research outputs
#18,560,904
of 22,988,380 outputs
Outputs from BMC Medical Informatics and Decision Making
#1,581
of 2,003 outputs
Outputs of similar age
#239,782
of 313,314 outputs
Outputs of similar age from BMC Medical Informatics and Decision Making
#33
of 41 outputs
Altmetric has tracked 22,988,380 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,003 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,314 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.