↓ Skip to main content

Proof of concept non-invasive estimation of peripheral venous oxygen saturation

Overview of attention for article published in BioMedical Engineering OnLine, May 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Proof of concept non-invasive estimation of peripheral venous oxygen saturation
Published in
BioMedical Engineering OnLine, May 2017
DOI 10.1186/s12938-017-0351-x
Pubmed ID
Authors

Musabbir Khan, Chris G. Pretty, Alexander C. Amies, Joel Balmer, Houda E. Banna, Geoffrey M. Shaw, J. Geoffrey Chase

Abstract

Pulse oximeters continuously monitor arterial oxygen saturation. Continuous monitoring of venous oxygen saturation (SvO2) would enable real-time assessment of tissue oxygen extraction (O2E) and perfusion changes leading to improved diagnosis of clinical conditions, such as sepsis. This study presents the proof of concept of a novel pulse oximeter method that utilises the compliance difference between arteries and veins to induce artificial respiration-like modulations to the peripheral vasculature. These modulations make the venous blood pulsatile, which are then detected by a pulse oximeter sensor. The resulting photoplethysmograph (PPG) signals from the pulse oximeter are processed and analysed to develop a calibration model to estimate regional venous oxygen saturation (SpvO2), in parallel to arterial oxygen saturation estimation (SpaO2). A clinical study with healthy adult volunteers (n = 8) was conducted to assess peripheral SvO2 using this pulse oximeter method. A range of physiologically realistic SvO2 values were induced using arm lift and vascular occlusion tests. Gold standard, arterial and venous blood gas measurements were used as reference measurements. Modulation ratios related to arterial and venous systems were determined using a frequency domain analysis of the PPG signals. A strong, linear correlation (r (2)  = 0.95) was found between estimated venous modulation ratio (RVen) and measured SvO2, providing a calibration curve relating measured RVen to venous oxygen saturation. There is a significant difference in gradient between the SpvO2 estimation model (SpvO2 = 111 - 40.6*R) and the empirical SpaO2 estimation model (SpaO2 = 110 - 25*R), which yields the expected arterial-venous differences. Median venous and arterial oxygen saturation accuracies of paired measurements between pulse oximeter estimated and gold standard measurements were 0.29 and 0.65%, respectively, showing good accuracy of the pulse oximeter system. The main outcome of this study is the proof of concept validation of a novel pulse oximeter sensor and calibration model to assess peripheral SvO2, and thus O2E, using the method used in this study. Further validation, improvement, and application of this model can aid in clinical diagnosis of microcirculation failures due to alterations in oxygen extraction.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 1 2%
Unknown 56 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 16%
Student > Bachelor 8 14%
Student > Ph. D. Student 5 9%
Lecturer 4 7%
Other 3 5%
Other 8 14%
Unknown 20 35%
Readers by discipline Count As %
Medicine and Dentistry 12 21%
Engineering 8 14%
Sports and Recreations 3 5%
Computer Science 2 4%
Physics and Astronomy 2 4%
Other 8 14%
Unknown 22 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 January 2018.
All research outputs
#15,469,838
of 22,988,380 outputs
Outputs from BioMedical Engineering OnLine
#424
of 824 outputs
Outputs of similar age
#196,420
of 312,879 outputs
Outputs of similar age from BioMedical Engineering OnLine
#6
of 16 outputs
Altmetric has tracked 22,988,380 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 824 research outputs from this source. They receive a mean Attention Score of 4.6. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,879 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.