↓ Skip to main content

The oxidative burst reaction in mammalian cells depends on gravity

Overview of attention for article published in Cell Communication and Signaling, December 2013
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • High Attention Score compared to outputs of the same age and source (99th percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Citations

dimensions_citation
67 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The oxidative burst reaction in mammalian cells depends on gravity
Published in
Cell Communication and Signaling, December 2013
DOI 10.1186/1478-811x-11-98
Pubmed ID
Authors

Astrid Adrian, Kathrin Schoppmann, Juri Sromicki, Sonja Brungs, Melanie von der Wiesche, Bertold Hock, Waldemar Kolanus, Ruth Hemmersbach, Oliver Ullrich

Abstract

Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in "functional weightlessness" were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function of the NADPH oxidase complex.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 64 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 15 23%
Student > Ph. D. Student 11 17%
Researcher 8 13%
Student > Master 7 11%
Professor > Associate Professor 3 5%
Other 6 9%
Unknown 14 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 22%
Agricultural and Biological Sciences 9 14%
Medicine and Dentistry 9 14%
Immunology and Microbiology 5 8%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Other 11 17%
Unknown 14 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 May 2020.
All research outputs
#3,466,739
of 24,593,959 outputs
Outputs from Cell Communication and Signaling
#82
of 1,267 outputs
Outputs of similar age
#40,096
of 317,572 outputs
Outputs of similar age from Cell Communication and Signaling
#1
of 14 outputs
Altmetric has tracked 24,593,959 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,267 research outputs from this source. They receive a mean Attention Score of 3.9. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,572 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 99% of its contemporaries.