↓ Skip to main content

Association between transported Asian dust and outdoor fungal concentration during winter in a rural area of western Japan

Overview of attention for article published in Genes and Environment, July 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Association between transported Asian dust and outdoor fungal concentration during winter in a rural area of western Japan
Published in
Genes and Environment, July 2017
DOI 10.1186/s41021-017-0079-7
Pubmed ID
Authors

Kyoko Iwata, Masanari Watanabe, Jun Kurai, Naoto Burioka, Sachiko Nakamoto, Degejirihu Hantan, Eiji Shimizu

Abstract

Recently, Asian dust (AD) has become a serious health problem and several studies have clearly proven that AD can aggravate asthma. However, it remains unclear as to which components of AD have a strong effect on the asthma exacerbation caused by AD exposure. Outdoor fungi can increase emergency department visits and hospitalization for asthma exacerbation and can aggravate asthma symptoms. Therefore, this study was aimed at investigating the relationship between AD and outdoor fungi and determining the potential of fungi to cause airborne particulate matter (PM)-related inflammatory responses. Airborne PM was collected each day from January 26, 2015 to February 27, 2015. Daily levels of outdoor fungi-associated PM were calculated using a culture-based method. Production of cytokines such as interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α was assessed in THP1 cells stimulated by the collected airborne PM each day. Daily levels of AD particles were assessed using Light Detection and Ranging and did not correlate with outdoor fungi (r = -0.17, P = 0.94). There was also no association between outdoor fungi and the daily production of IL-6 (r = 0.16, P = 0.37), IL-8 (r = 0.19, P = 0.30), or TNF-α induced by collected PM (r = 0.07, P = 0.70). However, the daily levels of AD particles were significantly associated with IL-6 (r = 0.91, P < 0.0001), IL-8 (r = 0.64, P = 0.0004), and TNF-α (r = 0.72, P < 0.0001) production. AD did not increase the acute levels of outdoor fungi and outdoor fungi did not affect the cytokine production induced by airborne PM. These results suggest that outdoor fungi do not have any detectable effect on the asthma exacerbation caused by AD exposure.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 24%
Student > Master 2 10%
Professor 2 10%
Other 1 5%
Lecturer 1 5%
Other 1 5%
Unknown 9 43%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 2 10%
Medicine and Dentistry 2 10%
Biochemistry, Genetics and Molecular Biology 1 5%
Nursing and Health Professions 1 5%
Immunology and Microbiology 1 5%
Other 3 14%
Unknown 11 52%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 July 2017.
All research outputs
#17,289,387
of 25,382,440 outputs
Outputs from Genes and Environment
#64
of 135 outputs
Outputs of similar age
#209,092
of 326,855 outputs
Outputs of similar age from Genes and Environment
#2
of 3 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 135 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,855 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 3 others from the same source and published within six weeks on either side of this one.