↓ Skip to main content

Highly efficient methane generation from untreated microalgae biomass

Overview of attention for article published in Biotechnology for Biofuels, July 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)

Mentioned by

1 news outlet
4 tweeters


37 Dimensions

Readers on

114 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Highly efficient methane generation from untreated microalgae biomass
Published in
Biotechnology for Biofuels, July 2017
DOI 10.1186/s13068-017-0871-4
Pubmed ID

Viktor Klassen, Olga Blifernez-Klassen, Daniel Wibberg, Anika Winkler, Jörn Kalinowski, Clemens Posten, Olaf Kruse


The fact that microalgae perform very efficiently photosynthetic conversion of sunlight into chemical energy has moved them into the focus of regenerative fuel research. Especially, biogas generation via anaerobic digestion is economically attractive due to the comparably simple apparative process technology and the theoretical possibility of converting the entire algal biomass to biogas/methane. In the last 60 years, intensive research on biogas production from microalgae biomass has revealed the microalgae as a rather challenging substrate for anaerobic digestion due to its high cell wall recalcitrance and unfavorable protein content, which requires additional pretreatment and co-fermentation strategies for sufficient fermentation. However, sustainable fuel generation requires the avoidance of cost/energy intensive biomass pretreatments to achieve positive net-energy process balance. Cultivation of microalgae in replete and limited nitrogen culture media conditions has led to the formation of protein-rich and low protein biomass, respectively, with the last being especially optimal for continuous fermentation. Anaerobic digestion of nitrogen limited biomass (low-N BM) was characterized by a stable process with low levels of inhibitory substances and resulted in extraordinary high biogas, and subsequently methane productivity [750 ± 15 and 462 ± 9 mLN g(-1) volatile solids (VS) day(-1), respectively], thus corresponding to biomass-to-methane energy conversion efficiency of up to 84%. The microbial community structure within this highly efficient digester revealed a clear predominance of the phyla Bacteroidetes and the family Methanosaetaceae among the Bacteria and Archaea, respectively. The fermentation of replete nitrogen biomass (replete-N BM), on the contrary, was demonstrated to be less productive (131 ± 33 mLN CH4 g(-1)VS day(-1)) and failed completely due to acidosis, caused through high ammonia/ammonium concentrations. The organization of the microbial community of the failed (replete-N) digester differed greatly compared to the stable low-N digester, presenting a clear shift to the phyla Firmicutes and Thermotogae, and the archaeal population shifted from acetoclastic to hydrogenotrophic methanogenesis. The present study underlines the importance of cultivation conditions and shows the practicability of microalgae biomass usage as mono-substrate for highly efficient continuous fermentation to methane without any pretreatment with almost maximum practically achievable energy conversion efficiency (biomass to methane).Graphical abstractGrowth condition dependence of anaerobic conversion efficiency of microalgae biomass to methane.

Twitter Demographics

The data shown below were collected from the profiles of 4 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 114 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 114 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 21 18%
Student > Bachelor 19 17%
Researcher 16 14%
Student > Ph. D. Student 14 12%
Student > Doctoral Student 11 10%
Other 21 18%
Unknown 12 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 21 18%
Biochemistry, Genetics and Molecular Biology 20 18%
Chemical Engineering 13 11%
Engineering 13 11%
Environmental Science 11 10%
Other 13 11%
Unknown 23 20%

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 September 2021.
All research outputs
of 19,157,212 outputs
Outputs from Biotechnology for Biofuels
of 1,331 outputs
Outputs of similar age
of 280,956 outputs
Outputs of similar age from Biotechnology for Biofuels
of 4 outputs
Altmetric has tracked 19,157,212 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,331 research outputs from this source. They receive a mean Attention Score of 4.6. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,956 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them