↓ Skip to main content

Inferring Methionine Sulfoxidation and serine Phosphorylation crosstalk from Phylogenetic analyses

Overview of attention for article published in BMC Ecology and Evolution, July 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inferring Methionine Sulfoxidation and serine Phosphorylation crosstalk from Phylogenetic analyses
Published in
BMC Ecology and Evolution, July 2017
DOI 10.1186/s12862-017-1017-9
Pubmed ID
Authors

Juan Carlos Aledo

Abstract

The sulfoxidation of methionine residues within the phosphorylation motif of protein kinase substrates, may provide a mechanism to couple oxidative signals to changes in protein phosphorylation. Herein, we hypothesize that if the residues within a pair of phosphorylatable-sulfoxidable sites are functionally linked, then they might have been coevolving. To test this hypothesis a number of site pairs previously detected on human stress-related proteins has been subjected to analysis using eukaryote ortholog sequences and a phylogenetic approach. Overall, the results support the conclusion that in the eIF2α protein, serine phosphorylation at position 218 and methionine oxidation at position 222, belong to the same functional network. First, the observed data were much better fitted by Markovian models that assumed coevolution of both sites, with respect to their counterparts assuming independent evolution (p-value = 0.003). Second, this conclusion was robust with respect to the methods used to reconstruct the phylogenetic relationship between the 233 eukaryotic species analyzed. Third, the co-distribution of phosphorylatable and sulfoxidable residues at these positions showed multiple origins throughout the evolution of eukaryotes, which further supports the view of an adaptive value for this co-occurrence. Fourth, the possibility that the coevolution of these two sites might be due to structure-driven compensatory mutations was evaluated. The results suggested that factors other than those merely structural were behind the observed coevolution. Finally, the relationship detected between other modifiable site pairs from ataxin-2 (S814-M815), ataxin-2-like (S211-M215) and Pumilio homolog 1 (S124-M125), reinforce the view of a role for phosphorylation-sulfoxidation crosstalk. For the four stress-related proteins analyzed herein, their respective pairs of PTM sites (phosphorylatable serine and sulfoxidable methionine) were found to be evolving in a correlated fashion, which suggests a relevant role for methionine sulfoxidation and serine phosphorylation crosstalk in the control of protein translation under stress conditions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 25%
Student > Ph. D. Student 3 25%
Student > Doctoral Student 2 17%
Professor 1 8%
Student > Master 1 8%
Other 1 8%
Unknown 1 8%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 42%
Environmental Science 1 8%
Pharmacology, Toxicology and Pharmaceutical Science 1 8%
Agricultural and Biological Sciences 1 8%
Social Sciences 1 8%
Other 2 17%
Unknown 1 8%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 November 2017.
All research outputs
#20,660,571
of 25,382,440 outputs
Outputs from BMC Ecology and Evolution
#3,267
of 3,714 outputs
Outputs of similar age
#253,259
of 327,247 outputs
Outputs of similar age from BMC Ecology and Evolution
#74
of 81 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 5th percentile – i.e., 5% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,247 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 81 others from the same source and published within six weeks on either side of this one. This one is in the 6th percentile – i.e., 6% of its contemporaries scored the same or lower than it.