↓ Skip to main content

The house spider genome reveals an ancient whole-genome duplication during arachnid evolution

Overview of attention for article published in BMC Biology, July 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#18 of 1,527)
  • High Attention Score compared to outputs of the same age (98th percentile)

Mentioned by

news
11 news outlets
blogs
5 blogs
twitter
152 tweeters
facebook
3 Facebook pages
wikipedia
1 Wikipedia page
googleplus
1 Google+ user

Citations

dimensions_citation
162 Dimensions

Readers on

mendeley
194 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The house spider genome reveals an ancient whole-genome duplication during arachnid evolution
Published in
BMC Biology, July 2017
DOI 10.1186/s12915-017-0399-x
Pubmed ID
Authors

Evelyn E. Schwager, Prashant P. Sharma, Thomas Clarke, Daniel J. Leite, Torsten Wierschin, Matthias Pechmann, Yasuko Akiyama-Oda, Lauren Esposito, Jesper Bechsgaard, Trine Bilde, Alexandra D. Buffry, Hsu Chao, Huyen Dinh, HarshaVardhan Doddapaneni, Shannon Dugan, Cornelius Eibner, Cassandra G. Extavour, Peter Funch, Jessica Garb, Luis B. Gonzalez, Vanessa L. Gonzalez, Sam Griffiths-Jones, Yi Han, Cheryl Hayashi, Maarten Hilbrant, Daniel S. T. Hughes, Ralf Janssen, Sandra L. Lee, Ignacio Maeso, Shwetha C. Murali, Donna M. Muzny, Rodrigo Nunes da Fonseca, Christian L. B. Paese, Jiaxin Qu, Matthew Ronshaugen, Christoph Schomburg, Anna Schönauer, Angelika Stollewerk, Montserrat Torres-Oliva, Natascha Turetzek, Bram Vanthournout, John H. Werren, Carsten Wolff, Kim C. Worley, Gregor Bucher, Richard A. Gibbs, Jonathan Coddington, Hiroki Oda, Mario Stanke, Nadia A. Ayoub, Nikola-Michael Prpic, Jean-François Flot, Nico Posnien, Stephen Richards, Alistair P. McGregor

Abstract

The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.

Twitter Demographics

The data shown below were collected from the profiles of 152 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 194 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 194 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 44 23%
Researcher 34 18%
Student > Bachelor 27 14%
Student > Master 21 11%
Student > Doctoral Student 12 6%
Other 31 16%
Unknown 25 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 85 44%
Biochemistry, Genetics and Molecular Biology 58 30%
Pharmacology, Toxicology and Pharmaceutical Science 4 2%
Environmental Science 3 2%
Arts and Humanities 3 2%
Other 11 6%
Unknown 30 15%

Attention Score in Context

This research output has an Altmetric Attention Score of 200. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 March 2021.
All research outputs
#106,457
of 17,630,293 outputs
Outputs from BMC Biology
#18
of 1,527 outputs
Outputs of similar age
#3,499
of 277,475 outputs
Outputs of similar age from BMC Biology
#1
of 1 outputs
Altmetric has tracked 17,630,293 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,527 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 19.8. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 277,475 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them