↓ Skip to main content

Intranasal insulin reverts central pathology and cognitive impairment in diabetic mother offspring

Overview of attention for article published in Molecular Neurodegeneration, August 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Intranasal insulin reverts central pathology and cognitive impairment in diabetic mother offspring
Published in
Molecular Neurodegeneration, August 2017
DOI 10.1186/s13024-017-0198-4
Pubmed ID
Authors

Juan Jose Ramos-Rodriguez, Daniel Sanchez-Sotano, Alberto Doblas-Marquez, Carmen Infante-Garcia, Simon Lubian-Lopez, Monica Garcia-Alloza

Abstract

Adverse effects in diabetic mothers offspring (DMO) are a major concern of increasing incidence. Among these, chronic central complications in DMO remain poorly understood, and in extreme cases, diabetes can essentially function as a gestational brain insult. Nevertheless, therapeutic alternatives for DMO are limited. Therefore, we have analyzed the central long-term complications in the offspring from CD1 diabetic mothers treated with streptozotozin, as well as the possible reversion of these alterations by insulin administration to neonates. Brain atrophy, neuronal morphology, tau phosphorylation, proliferation and neurogenesis were assessed in the short term (P7) and in the early adulthood (10 weeks) and cognitive function was also analyzed in the long-term. Central complications in DMO were still detected in the adulthood, including cortical and hippocampal thinning due to synaptic loss and neuronal simplification, increased tau hyperphosphorylation, and diminished cell proliferation and neurogenesis. Additionally, maternal diabetes increased the long-term susceptibility to spontaneous central bleeding, inflammation and cognition impairment in the offspring. On the other hand, intracerebroventricular insulin administration to neonates significantly reduced observed alterations. Moreover, non-invasive intranasal insulin reversed central atrophy and tau hyperphosphorylation, and rescued central proliferation and neurogenesis. Vascular damage, inflammation and cognitive alterations were also comparable to their counterparts born to nondiabetic mice, supporting the utility of this pathway to access the central nervous system. Our data underlie the long-term effects of central complications in DMO. Moreover, observed improvement after insulin treatment opens the door to therapeutic alternatives for children who are exposed to poorly controlled gestational diabetes, and who may benefit from more individualized treatments.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 17%
Student > Bachelor 8 17%
Researcher 5 11%
Student > Postgraduate 4 9%
Other 3 6%
Other 8 17%
Unknown 11 23%
Readers by discipline Count As %
Medicine and Dentistry 8 17%
Neuroscience 7 15%
Biochemistry, Genetics and Molecular Biology 5 11%
Psychology 4 9%
Nursing and Health Professions 4 9%
Other 7 15%
Unknown 12 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 August 2017.
All research outputs
#18,566,650
of 22,996,001 outputs
Outputs from Molecular Neurodegeneration
#791
of 853 outputs
Outputs of similar age
#243,218
of 317,618 outputs
Outputs of similar age from Molecular Neurodegeneration
#16
of 16 outputs
Altmetric has tracked 22,996,001 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 853 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,618 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.