↓ Skip to main content

Tough decoy targeting of predominant let-7 miRNA species in adult human hematopoietic cells

Overview of attention for article published in Journal of Translational Medicine, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Tough decoy targeting of predominant let-7 miRNA species in adult human hematopoietic cells
Published in
Journal of Translational Medicine, August 2017
DOI 10.1186/s12967-017-1273-x
Pubmed ID
Authors

Jaira F. de Vasconcellos, Colleen Byrnes, Y. Terry Lee, Joshua M. Allwardt, Megha Kaushal, Antoinette Rabel, Jeffery L. Miller

Abstract

In humans, the heterochronic cascade composed of the RNA-binding protein LIN28 and its major target, the let-7 family of microRNAs (miRNAs), is highly regulated during human erythroid ontogeny. Additionally, down-regulation of the let-7 miRNAs in cultured adult CD34(+) cells or the over-expression of LIN28 in cultured erythrocytes from pediatric patients with HbSS genotype causes increased levels of fetal hemoglobin (HbF) in the range of 19-40% of the total. Therefore, we hypothesized that focused targeting of individual let-7 miRNA family members would exhibit regulatory effect on HbF expression in human adult erythroblasts. The expression levels of mature let-7 family members were measured by RT-qPCR in purified cell populations sorted from peripheral blood. To study the effects of let-7 miRNAs upon globin expression, a lentiviral construct that incorporated the tough decoy (TuD) design to target let-7a or let-7b was compared with empty vector controls. Transductions were performed in CD34(+) cells from adult healthy volunteers cultivated ex vivo in erythropoietin-supplemented serum-free media for 21 days. Downstream analyses included RT-qPCR, Western blot and HPLC for the characterization of adult and fetal hemoglobins. The expression of individual let-7 miRNA family members in adult peripheral blood cell populations demonstrated that let-7a and let-7b miRNAs are expressed at much higher levels than the other let-7 family members in purified adult human blood cell subsets with expression being predominantly in reticulocytes. Therefore, we focused this study upon the targeted inhibition of let-7a and let-7b with the TuD design to explore its effects upon developmentally-timed erythroid genes. Let-7a-TuD transductions significantly increased gamma-globin mRNA expression and HbF to an average of 38%. Let-7a-TuD also significantly decreased the mRNA expression of some ontogeny-regulated erythroid genes, namely CA1 and GCNT2. In addition, the erythroid-related transcription factors BCL11A and HMGA2 were down- and up-regulated, respectively, by let-7a-TuD, while ZBTB7A, KLF1 and SOX6 remained unchanged. Overall, our data demonstrate that let-7 miRNAs are differentially expressed in human hematopoietic cells, and that targeted inhibition of the highly-expressed species of this family is sufficient for developmentally-specific changes in gamma-globin expression and HbF levels.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 15%
Researcher 4 15%
Student > Master 4 15%
Student > Bachelor 1 4%
Professor 1 4%
Other 5 19%
Unknown 7 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 50%
Agricultural and Biological Sciences 3 12%
Medicine and Dentistry 2 8%
Unspecified 1 4%
Unknown 7 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 August 2017.
All research outputs
#14,950,579
of 22,996,001 outputs
Outputs from Journal of Translational Medicine
#1,993
of 4,019 outputs
Outputs of similar age
#188,386
of 317,618 outputs
Outputs of similar age from Journal of Translational Medicine
#25
of 52 outputs
Altmetric has tracked 22,996,001 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,019 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,618 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 52 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.