↓ Skip to main content

Sex differences in microRNA-mRNA networks: examination of novel epigenetic programming mechanisms in the sexually dimorphic neonatal hypothalamus

Overview of attention for article published in Biology of Sex Differences, August 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

twitter
10 X users
facebook
2 Facebook pages

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sex differences in microRNA-mRNA networks: examination of novel epigenetic programming mechanisms in the sexually dimorphic neonatal hypothalamus
Published in
Biology of Sex Differences, August 2017
DOI 10.1186/s13293-017-0149-3
Pubmed ID
Authors

Christopher P. Morgan, Tracy L. Bale

Abstract

Sexual differentiation of the male brain, and specifically the stress circuitry in the hypothalamus, is primarily driven by estrogen exposure during the perinatal period. Surprisingly, this single hormone promotes diverse programs of sex-specific development that vary widely between different cell types and across the developing male brain. The complexity of this phenomenon suggests that additional layers of gene regulation, including microRNAs (miRNAs), must act downstream of estrogen to mediate this specificity. To identify noncanonical mediators of estrogen-dependent sex-specific neural development, we assayed the miRNA complement of the mouse PN2 hypothalamus by microarray following an injection of vehicle or the aromatase inhibitor, formestane. Initially, multivariate analyses were used to test the influence of sex and experimental group on the miRNA environment as a whole. Then, we utilized traditional hypothesis testing to identify individual miRNA with significantly sex-biased expression. Finally, we performed a transcriptome-wide mapping of Argonaute footprints by high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (Ago HITS-CLIP) to empirically characterize targeting relationship between estrogen-responsive miRNAs and their messenger RNA (mRNA) targets. In this study, we demonstrated that the neonatal hypothalamic miRNA environment has robust sex differences and is dynamically responsive to estrogen. Analyses identified 162 individual miRNAs with sex-biased expression, 92 of which were estrogen-responsive. Examining the genomic distribution of these miRNAs, we found three miRNA clusters encoded within a 175-kb region of chromosome 12 that appears to be co-regulated by estrogen, likely acting broadly to alter the epigenetic programming of this locus. Ago HITS-CLIP analysis uncovered novel miRNA-target interactions within prototypical mediators of estrogen-driven sexual differentiation of the brain, including Esr1 and Cyp19a1. Finally, using Gene Ontology annotations and empirically identified miRNA-mRNA connections, we identified a gene network regulated by estrogen-responsive miRNAs that converge on biological processes relevant to sexual differentiation of the brain. Sexual differentiation of the perinatal brain, and that of stress circuitry in the hypothalamus specifically, seems to be particularly susceptible to environmental programming effects. Integrating miRNA into our conceptualization of factors, directing differentiation of this circuitry could be an informative next step in efforts to understand the complexities behind these processes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 20%
Student > Ph. D. Student 10 18%
Student > Bachelor 9 16%
Professor > Associate Professor 4 7%
Student > Master 3 5%
Other 5 9%
Unknown 13 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 18%
Neuroscience 7 13%
Biochemistry, Genetics and Molecular Biology 6 11%
Medicine and Dentistry 6 11%
Psychology 4 7%
Other 8 15%
Unknown 14 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 August 2017.
All research outputs
#6,030,445
of 22,997,544 outputs
Outputs from Biology of Sex Differences
#193
of 473 outputs
Outputs of similar age
#94,846
of 316,580 outputs
Outputs of similar age from Biology of Sex Differences
#1
of 6 outputs
Altmetric has tracked 22,997,544 research outputs across all sources so far. This one has received more attention than most of these and is in the 73rd percentile.
So far Altmetric has tracked 473 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 19.9. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,580 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them