↓ Skip to main content

Association of coral algal symbionts with a diverse viral community responsive to heat shock

Overview of attention for article published in BMC Microbiology, August 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)
  • Good Attention Score compared to outputs of the same age and source (76th percentile)

Mentioned by

twitter
12 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
80 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Association of coral algal symbionts with a diverse viral community responsive to heat shock
Published in
BMC Microbiology, August 2017
DOI 10.1186/s12866-017-1084-5
Pubmed ID
Authors

Jan D. Brüwer, Shobhit Agrawal, Yi Jin Liew, Manuel Aranda, Christian R. Voolstra

Abstract

Stony corals provide the structural foundation of coral reef ecosystems and are termed holobionts given they engage in symbioses, in particular with photosynthetic dinoflagellates of the genus Symbiodinium. Besides Symbiodinium, corals also engage with bacteria affecting metabolism, immunity, and resilience of the coral holobiont, but the role of associated viruses is largely unknown. In this regard, the increase of studies using RNA sequencing (RNA-Seq) to assess gene expression provides an opportunity to elucidate viral signatures encompassed within the data via careful delineation of sequence reads and their source of origin. Here, we re-analyzed an RNA-Seq dataset from a cultured coral symbiont (Symbiodinium microadriaticum, Clade A1) across four experimental treatments (control, cold shock, heat shock, dark shock) to characterize associated viral diversity, abundance, and gene expression. Our approach comprised the filtering and removal of host sequence reads, subsequent phylogenetic assignment of sequence reads of putative viral origin, and the assembly and analysis of differentially expressed viral genes. About 15.46% (123 million) of all sequence reads were non-host-related, of which <1% could be classified as archaea, bacteria, or virus. Of these, 18.78% were annotated as virus and comprised a diverse community consistent across experimental treatments. Further, non-host related sequence reads assembled into 56,064 contigs, including 4856 contigs of putative viral origin that featured 43 differentially expressed genes during heat shock. The differentially expressed genes included viral kinases, ubiquitin, and ankyrin repeat proteins (amongst others), which are suggested to help the virus proliferate and inhibit the algal host's antiviral response. Our results suggest that a diverse viral community is associated with coral algal endosymbionts of the genus Symbiodinium, which prompts further research on their ecological role in coral health and resilience.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 80 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 80 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 20 25%
Student > Ph. D. Student 18 23%
Researcher 9 11%
Student > Master 9 11%
Student > Doctoral Student 3 4%
Other 9 11%
Unknown 12 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 27 34%
Environmental Science 15 19%
Biochemistry, Genetics and Molecular Biology 11 14%
Engineering 4 5%
Immunology and Microbiology 3 4%
Other 6 8%
Unknown 14 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 April 2018.
All research outputs
#4,239,824
of 23,201,298 outputs
Outputs from BMC Microbiology
#457
of 3,226 outputs
Outputs of similar age
#74,665
of 319,226 outputs
Outputs of similar age from BMC Microbiology
#14
of 55 outputs
Altmetric has tracked 23,201,298 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,226 research outputs from this source. They receive a mean Attention Score of 4.1. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 319,226 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 55 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 76% of its contemporaries.