↓ Skip to main content

A virus-induced gene silencing (VIGS) system for functional genomics in the parasitic plant Striga hermonthica

Overview of attention for article published in Plant Methods, June 2014
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (84th percentile)

Mentioned by

blogs
1 blog
twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
147 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A virus-induced gene silencing (VIGS) system for functional genomics in the parasitic plant Striga hermonthica
Published in
Plant Methods, June 2014
DOI 10.1186/1746-4811-10-16
Pubmed ID
Authors

Dinah Kirigia, Steven Runo, Amos Alakonya

Abstract

Striga hermonthica is a hemiparasitic weed that infects cereals in Sub Sahara Africa (SSA) resulting in up to 100% grain yield loss. This significant loss in grain yields is a major contributor to food insecurity and poverty in the region. Current strategies to control the parasite are costly, unavailable and remain unpracticed by small-scale farmers, underscoring the need for more economical and sustainable control strategies. Development of resistant germplasm is the most sustainable strategy in the control of S. hermonthica, but is constrained by paucity of resistance genes for introduction into crop germplasm. RNA interference (RNAi) has potential for developing host-derived resistance against S. hermonthica by transformation of host crops with RNAi sequences targeted at critical Striga genes. The application of RNAi in management of S. hermonthica is however constrained by lack of efficient high throughput screening protocols for the candidate genes for silencing, as well as sub optimal delivery of siRNAs into the parasite. In comparison to stable transformation, viral induced gene silencing (VIGS) is a rapid and powerful tool for plant functional genomics and provides an easy and effective strategy in screening for putative candidate genes to target through RNAi. In addition, VIGS allows for a secondary amplification of the RNAi signal increasing the siRNA threshold and facilitates siRNA transport through viral movement proteins. We tested the efficiency of the Tobacco rattle virus (TRV1 and TRV2) VIGS vectors in silencing S. hermonthica phytoene desaturase (PDS) gene through agrodrench and agro-infiltration.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 147 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 1%
India 1 <1%
Slovakia 1 <1%
Unknown 143 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 31 21%
Student > Master 25 17%
Researcher 23 16%
Student > Bachelor 16 11%
Student > Doctoral Student 9 6%
Other 21 14%
Unknown 22 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 84 57%
Biochemistry, Genetics and Molecular Biology 23 16%
Social Sciences 4 3%
Business, Management and Accounting 2 1%
Engineering 2 1%
Other 7 5%
Unknown 25 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 May 2020.
All research outputs
#4,216,382
of 25,371,288 outputs
Outputs from Plant Methods
#238
of 1,262 outputs
Outputs of similar age
#39,266
of 242,006 outputs
Outputs of similar age from Plant Methods
#2
of 13 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,262 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 242,006 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 84% of its contemporaries.