↓ Skip to main content

Physical mapping of QTL for tuber yield, starch content and starch yield in tetraploid potato (Solanum tuberosum L.) by means of genome wide genotyping by sequencing and the 8.3 K SolCAP SNP array

Overview of attention for article published in BMC Genomics, August 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 tweeters

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
53 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Physical mapping of QTL for tuber yield, starch content and starch yield in tetraploid potato (Solanum tuberosum L.) by means of genome wide genotyping by sequencing and the 8.3 K SolCAP SNP array
Published in
BMC Genomics, August 2017
DOI 10.1186/s12864-017-3979-9
Pubmed ID
Authors

Elske Maria Schönhals, Jia Ding, Enrique Ritter, Maria João Paulo, Nicolás Cara, Ekhard Tacke, Hans-Reinhard Hofferbert, Jens Lübeck, Josef Strahwald, Christiane Gebhardt

Abstract

Tuber yield and starch content of the cultivated potato are complex traits of decisive importance for breeding improved varieties. Natural variation of tuber yield and starch content depends on the environment and on multiple, mostly unknown genetic factors. Dissection and molecular identification of the genes and their natural allelic variants controlling these complex traits will lead to the development of diagnostic DNA-based markers, by which precision and efficiency of selection can be increased (precision breeding). Three case-control populations were assembled from tetraploid potato cultivars based on maximizing the differences between high and low tuber yield (TY), starch content (TSC) and starch yield (TSY, arithmetic product of TY and TSC). The case-control populations were genotyped by restriction-site associated DNA sequencing (RADseq) and the 8.3 k SolCAP SNP genotyping array. The allele frequencies of single nucleotide polymorphisms (SNPs) were compared between cases and controls. RADseq identified, depending on data filtering criteria, between 6664 and 450 genes with one or more differential SNPs for one, two or all three traits. Differential SNPs in 275 genes were detected using the SolCAP array. A genome wide association study using the SolCAP array on an independent, unselected population identified SNPs associated with tuber starch content in 117 genes. Physical mapping of the genes containing differential or associated SNPs, and comparisons between the two genome wide genotyping methods and two different populations identified genome segments on all twelve potato chromosomes harboring one or more quantitative trait loci (QTL) for TY, TSC and TSY. Several hundred genes control tuber yield and starch content in potato. They are unequally distributed on all potato chromosomes, forming clusters between 0.5-4 Mbp width. The largest fraction of these genes had unknown function, followed by genes with putative signalling and regulatory functions. The genetic control of tuber yield and starch content is interlinked. Most differential SNPs affecting both traits had antagonistic effects: The allele increasing TY decreased TSC and vice versa. Exceptions were 89 SNP alleles which had synergistic effects on TY, TSC and TSY. These and the corresponding genes are primary targets for developing diagnostic markers.

Twitter Demographics

The data shown below were collected from the profiles of 5 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 53 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 26%
Student > Ph. D. Student 8 15%
Student > Postgraduate 4 8%
Student > Master 4 8%
Student > Bachelor 3 6%
Other 6 11%
Unknown 14 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 26 49%
Biochemistry, Genetics and Molecular Biology 8 15%
Computer Science 2 4%
Business, Management and Accounting 1 2%
Mathematics 1 2%
Other 2 4%
Unknown 13 25%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 April 2018.
All research outputs
#7,190,601
of 12,749,777 outputs
Outputs from BMC Genomics
#3,719
of 7,488 outputs
Outputs of similar age
#122,972
of 264,821 outputs
Outputs of similar age from BMC Genomics
#7
of 18 outputs
Altmetric has tracked 12,749,777 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,488 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,821 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.