↓ Skip to main content

Genetic diversity and differentiation patterns in Micromeria from the Canary Islands are congruent with multiple colonization dynamics and the establishment of species syngameons

Overview of attention for article published in BMC Evolutionary Biology, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 tweeters

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genetic diversity and differentiation patterns in Micromeria from the Canary Islands are congruent with multiple colonization dynamics and the establishment of species syngameons
Published in
BMC Evolutionary Biology, August 2017
DOI 10.1186/s12862-017-1031-y
Pubmed ID
Authors

M. Curto, P. Puppo, S. Kratschmer, H. Meimberg

Abstract

Especially on islands closer to the mainland, such as the Canary Islands, different lineages that originated by multiple colonization events could have merged by hybridization, which then could have promoted radiation events (Herben et al., J Ecol 93: 572-575, 2005; Saunders and Gibson, J Ecol 93: 649-652, 2005; Caujapé-Castells, Jesters, red queens, boomerangs and surfers: a molecular outlook on the diversity of the Canarian endemic flora, 2011). This is an alternative to the scenario where evolution is mostly driven by drift (Silvertown, J Ecol 92: 168-173, 2004; Silvertown et al., J Ecol 93: 653-657, 2005). In the former case hybridization should be reflected in the genetic structure and diversity patterns of island species. In the present work we investigate Micromeria from the Canary Islands by extensively studying their phylogeographic pattern based on 15 microsatellite loci and 945 samples. These results are interpreted according to the hypotheses outlined above. Genetic structure assessment allowed us to genetically differentiate most Micromeria species and supported their current classification. We found that populations on younger islands were significantly more genetically diverse and less differentiated than those on older islands. Moreover, we found that genetic distance on younger islands was in accordance with an isolation-by-distance pattern, while on the older islands this was not the case. We also found evidence of introgression among species and islands. These results are congruent with a scenario of multiple colonizations during the expansion onto new islands. Hybridization contributes to the grouping of multiple lineages into highly diverse populations. Thus, in our case, islands receive several colonization events from different sources, which are combined into sink populations. This mechanism is in accordance with the surfing syngameon hypothesis. Contrary to the surfing syngameon current form, our results may reflect a slightly different effect: hybridization might always be related to colonization within the archipelago as well, making initial genetic diversity to be high to begin with. Thus the emergence of new islands promotes multiple colonization events, contributing to the establishment of hybrid swarms that may enhance adaptive ability and radiation events. With time, population sizes grow and niches start to fill. Consequently, gene-flow is not as effective at maintaining the species syngameon, which allows genetic differentiation and reproductive isolation to be established between species. This process contributes to an even further decrease in gene-flow between species.

Twitter Demographics

The data shown below were collected from the profiles of 3 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 26%
Student > Ph. D. Student 6 19%
Researcher 5 16%
Student > Doctoral Student 3 10%
Professor > Associate Professor 2 6%
Other 5 16%
Unknown 2 6%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 45%
Biochemistry, Genetics and Molecular Biology 6 19%
Environmental Science 4 13%
Nursing and Health Professions 1 3%
Medicine and Dentistry 1 3%
Other 0 0%
Unknown 5 16%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 August 2017.
All research outputs
#6,968,291
of 11,653,629 outputs
Outputs from BMC Evolutionary Biology
#1,612
of 2,234 outputs
Outputs of similar age
#137,988
of 263,152 outputs
Outputs of similar age from BMC Evolutionary Biology
#27
of 32 outputs
Altmetric has tracked 11,653,629 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,234 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.0. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,152 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.