↓ Skip to main content

Docosahexaenoic acid-containing choline phospholipid modulates LPS-induced neuroinflammation in vivo and in microglia in vitro

Overview of attention for article published in Journal of Neuroinflammation, August 2017
Altmetric Badge

Mentioned by

twitter
2 tweeters

Citations

dimensions_citation
49 Dimensions

Readers on

mendeley
61 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Docosahexaenoic acid-containing choline phospholipid modulates LPS-induced neuroinflammation in vivo and in microglia in vitro
Published in
Journal of Neuroinflammation, August 2017
DOI 10.1186/s12974-017-0939-x
Pubmed ID
Authors

Célia Fourrier, Julie Remus-Borel, Andrew D. Greenhalgh, Michel Guichardant, Nathalie Bernoud-Hubac, Michel Lagarde, Corinne Joffre, Sophie Layé

Abstract

Neuroinflammatory processes are considered a double-edged sword, having both protective and detrimental effects in the brain. Microglia, the brain's resident innate immune cells, are a key component of neuroinflammatory response. There is a growing interest in developing drugs to target microglia and control neuroinflammatory processes. In this regard, docosahexaenoic acid (DHA), the brain's n-3 polyunsaturated fatty acid, is a promising molecule to regulate pro-inflammatory microglia and cytokine production. Several works reported that the bioavailability of DHA to the brain is higher when DHA is acylated to phospholipid. In this work, we analyzed the anti-inflammatory activity of DHA-phospholipid, either acetylated at the sn-1 position (AceDoPC, a stable form thought to have superior access to the brain) or acylated with palmitic acid at the sn-1 position (PC-DHA) using a lipopolysaccharide (LPS)-induced neuroinflammation model both in vitro and in vivo. In vivo, adult C57Bl6/J mice were injected intravenously (i.v.) with either AceDoPC or PC-DHA 24 h prior to LPS (i.p.). For in vitro studies, immortalized murine microglia cells BV-2 were co-incubated with DHA forms and LPS. AceDoPC and PC-DHA effect on brain or BV-2 PUFA content was assessed by gas chromatography. LPS-induced pro-inflammatory cytokines interleukin IL-1β, IL-6, and tumor necrosis factor (TNF) α production were measured by quantitative PCR (qPCR) or multiplex. IL-6 receptors and associated signaling pathway STAT3 were assessed by FACS analysis and western-blot in vitro. In vivo, a single injection of AceDoPC or PC-DHA decreased LPS-induced IL-6 production in the hippocampus of mice. This effect could be linked to their direct effect on microglia, as revealed in vitro. In addition, AceDoPC or PC-DHA reduced IL-6 receptor while only AceDoPC decreased IL-6-induced STAT3 phosphorylation. These results highlight the potency of administered DHA-acetylated to phospholipids-to rapidly regulate LPS-induced neuroinflammatory processes through their effect on microglia. In particular, both IL-6 production and signaling are targeted by AceDoPC in microglia.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 61 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 20%
Student > Master 11 18%
Student > Bachelor 8 13%
Professor > Associate Professor 5 8%
Student > Doctoral Student 3 5%
Other 8 13%
Unknown 14 23%
Readers by discipline Count As %
Neuroscience 11 18%
Biochemistry, Genetics and Molecular Biology 10 16%
Agricultural and Biological Sciences 8 13%
Chemistry 4 7%
Medicine and Dentistry 2 3%
Other 9 15%
Unknown 17 28%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 September 2017.
All research outputs
#9,070,500
of 11,817,206 outputs
Outputs from Journal of Neuroinflammation
#892
of 1,349 outputs
Outputs of similar age
#177,143
of 265,096 outputs
Outputs of similar age from Journal of Neuroinflammation
#12
of 18 outputs
Altmetric has tracked 11,817,206 research outputs across all sources so far. This one is in the 20th percentile – i.e., 20% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,349 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,096 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.