↓ Skip to main content

Honokiol improved chondrogenesis and suppressed inflammation in human umbilical cord derived mesenchymal stem cells via blocking nuclear factor-κB pathway

Overview of attention for article published in BMC Molecular and Cell Biology, August 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Honokiol improved chondrogenesis and suppressed inflammation in human umbilical cord derived mesenchymal stem cells via blocking nuclear factor-κB pathway
Published in
BMC Molecular and Cell Biology, August 2017
DOI 10.1186/s12860-017-0145-9
Pubmed ID
Authors

Hao Wu, Zhanhai Yin, Ling Wang, Feng Li, Yusheng Qiu

Abstract

Cartilage degradation is the significant pathological process in osteoarthritis (OA). Inflammatory cytokines, such as interleukin-1β (IL-1β), activate various downstream mediators contributing to OA pathology. Recently, stem cell-based cartilage repair emerges as a potential therapeutic strategy that being widely studied, whereas, the outcome is still far from clinical application. In this study, we focused on an anti-inflammatory agent, honokiol, which is isolated from an herb, investigated the potential effects on human umbilical cord derived mesenchymal stem cells (hUC-MSCs) in IL-1β stimulation. Second passage hUC-MSCs were cultured for multi-differentiation. Flow cytometry, qRT-PCR, von Kossa stain, alcian blue stain and oil red O stain were used for characterization and multi-differentiation determination. Honokiol (5, 10, 25, 50 μM) and IL-1β (10 ng/ml) were applied in hUC-MSCs during chondrogenesis. Analysis was performed by MTT, cell apoptosis evaluation, ELISA assay, qRT-PCR and western blot. hUC-MSC was positive for CD73, CD90 and CD105, but lack of CD34 and CD45. Remarkable osteogenesis, chondrogenesis and adipogenesis were detected in hUC-MSCs. IL-1β enhanced cell apoptosis and necrosis and activated the expression of caspase-3, cyclooxygenase-2 (COX-2), interleukin-6 (IL-6) and matrix metalloproteinase (MMP)-1, -9, 13 in hUC-MSCs. Moreover, the expression of SRY-related high-mobility group box 9 (SOX-9), aggrecan and col2α1 was suppressed. Honokiol relieved these negative impacts induced by IL-1β and suppressed Nuclear factor-κB (NF-κB) pathway by downregulating expression of p-IKKα/β, p-IκBα and p-p65 in dose-dependent and time-dependent manner. Honokiol improved cell survival and chondrogenesis of hUC-MSCs and inhibited IL-1β-induced inflammatory response, which suggested that combination of anti-inflammation and stem cell can be a novel strategy for better cartilage repair.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 14%
Student > Ph. D. Student 4 11%
Student > Doctoral Student 3 8%
Student > Bachelor 3 8%
Researcher 2 6%
Other 4 11%
Unknown 15 42%
Readers by discipline Count As %
Medicine and Dentistry 7 19%
Biochemistry, Genetics and Molecular Biology 4 11%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Nursing and Health Professions 1 3%
Agricultural and Biological Sciences 1 3%
Other 4 11%
Unknown 17 47%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 September 2017.
All research outputs
#20,663,600
of 25,382,440 outputs
Outputs from BMC Molecular and Cell Biology
#935
of 1,233 outputs
Outputs of similar age
#251,074
of 323,804 outputs
Outputs of similar age from BMC Molecular and Cell Biology
#9
of 13 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,233 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,804 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.