↓ Skip to main content

Mapping insecticide resistance and characterization of resistance mechanisms in Anopheles arabiensis (Diptera: Culicidae) in Ethiopia

Overview of attention for article published in Parasites & Vectors, September 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)

Mentioned by

11 tweeters


21 Dimensions

Readers on

115 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Mapping insecticide resistance and characterization of resistance mechanisms in Anopheles arabiensis (Diptera: Culicidae) in Ethiopia
Published in
Parasites & Vectors, September 2017
DOI 10.1186/s13071-017-2342-y
Pubmed ID

Eba Alemayehu, Abebe Asale, Kasahun Eba, Kefelegn Getahun, Kora Tushune, Astrid Bryon, Evangelia Morou, John Vontas, Thomas Van Leeuwen, Luc Duchateau, Delenasaw Yewhalaw


The emergence and spread of insecticide resistance in the major African malaria vectors Anopheles gambiae (s.s.) and An. arabiensis may compromise the current vector control interventions and threatens the global malaria control and elimination efforts. Insecticide resistance was monitored in several study sites in Ethiopia from 2013 to 2015 using papers impregnated with discriminating concentrations of DDT, deltamethrin, bendiocarb, propoxur, malathion, fenitrothion and pirimiphos-methyl, following the WHO insecticide susceptibility test procedure. Mosquitoes sampled from different localities for WHO bioassay were morphologically identified as An. gambiae (s.l.) using standard taxonomic keys. Samples were identified to species using species-specific polymerase chain reaction (PCR) and screened for the presence of target site mutations L1014F, L1014S and N1575Y in the voltage gated sodium channel (VGSC) gene and G119S in the acethylcholinesterase (AChE) gene using allele-specific PCR. Biochemical assays were performed to assess elevated levels of acetylcholinesterases, carboxylcholinesterases, glutathione-S-transferases (GSTs) and cytochrome P450s monooxygenases in wild populations of An. arabiensis, compared to the fully susceptible Sekoru An. arabiensis laboratory strain. Populations of An. arabiensis were resistant to DDT and deltamethrin but were susceptible to fenitrothion in all the study sites. Reduced susceptibility to malathion, pirimiphos-methyl, propoxur and bendiocarb was observed in some of the study sites. Knockdown resistance (kdr L1014F) was detected in all mosquito populations with allele frequency ranging from 42 to 91%. Elevated levels of glutathione-S-transferases (GSTs) were detected in some of the mosquito populations. However, no elevated levels of monooxygenases and esterases were detected in any of the populations assessed. Anopheles arabiensis populations from all surveyed sites in Ethiopia exhibited resistance against DDT and pyrethroids. Moreover, some mosquito populations exhibited resistance to propoxur and possible resistance to bendiocarb. Target site mutation kdr L1014F was detected in all mosquito populations while elevated levels of glutathione-S-transferases (GSTs) was detected in some mosquito populations. The reduced susceptibility of An. arabiensis to propoxur and bendiocarb, which are currently used for indoor residual spraying (IRS) in Ethiopia, calls for continuous resistance monitoring, in order to plan and implement evidence based insecticide resistance management.

Twitter Demographics

The data shown below were collected from the profiles of 11 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 115 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 115 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 28 24%
Student > Master 15 13%
Researcher 14 12%
Lecturer 8 7%
Student > Postgraduate 8 7%
Other 23 20%
Unknown 19 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 30 26%
Biochemistry, Genetics and Molecular Biology 13 11%
Medicine and Dentistry 13 11%
Environmental Science 9 8%
Immunology and Microbiology 5 4%
Other 22 19%
Unknown 23 20%

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 April 2018.
All research outputs
of 15,922,017 outputs
Outputs from Parasites & Vectors
of 4,271 outputs
Outputs of similar age
of 274,063 outputs
Outputs of similar age from Parasites & Vectors
of 1 outputs
Altmetric has tracked 15,922,017 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,271 research outputs from this source. They receive a mean Attention Score of 4.7. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,063 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them