↓ Skip to main content

Improving contig binning of metagenomic data using d2S oligonucleotide frequency dissimilarity

Overview of attention for article published in BMC Bioinformatics, September 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

blogs
2 blogs
twitter
15 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Improving contig binning of metagenomic data using d2S oligonucleotide frequency dissimilarity
Published in
BMC Bioinformatics, September 2017
DOI 10.1186/s12859-017-1835-1
Pubmed ID
Authors

Ying Wang, Kun Wang, Yang Young Lu, Fengzhu Sun

Abstract

Metagenomics sequencing provides deep insights into microbial communities. To investigate their taxonomic structure, binning assembled contigs into discrete clusters is critical. Many binning algorithms have been developed, but their performance is not always satisfactory, especially for complex microbial communities, calling for further development. According to previous studies, relative sequence compositions are similar across different regions of the same genome, but they differ between distinct genomes. Generally, current tools have used the normalized frequency of k-tuples directly, but this represents an absolute, not relative, sequence composition. Therefore, we attempted to model contigs using relative k-tuple composition, followed by measuring dissimilarity between contigs using [Formula: see text]. The [Formula: see text] was designed to measure the dissimilarity between two long sequences or Next-Generation Sequencing data with the Markov models of the background genomes. This method was effective in revealing group and gradient relationships between genomes, metagenomes and metatranscriptomes. With many binning tools available, we do not try to bin contigs from scratch. Instead, we developed [Formula: see text] to adjust contigs among bins based on the output of existing binning tools for a single metagenomic sample. The tool is taxonomy-free and depends only on k-tuples. To evaluate the performance of [Formula: see text], five widely used binning tools with different strategies of sequence composition or the hybrid of sequence composition and abundance were selected to bin six synthetic and real datasets, after which [Formula: see text] was applied to adjust the binning results. Our experiments showed that [Formula: see text] consistently achieves the best performance with tuple length k = 6 under the independent identically distributed (i.i.d.) background model. Using the metrics of recall, precision and ARI (Adjusted Rand Index), [Formula: see text] improves the binning performance in 28 out of 30 testing experiments (6 datasets with 5 binning tools). The [Formula: see text] is available at https://github.com/kunWangkun/d2SBin . Experiments showed that [Formula: see text] accurately measures the dissimilarity between contigs of metagenomic reads and that relative sequence composition is more reasonable to bin the contigs. The [Formula: see text] can be applied to any existing contig-binning tools for single metagenomic samples to obtain better binning results.

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 24%
Student > Master 7 15%
Student > Bachelor 4 9%
Student > Doctoral Student 3 7%
Unspecified 3 7%
Other 8 17%
Unknown 10 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 28%
Biochemistry, Genetics and Molecular Biology 7 15%
Computer Science 5 11%
Unspecified 3 7%
Environmental Science 2 4%
Other 4 9%
Unknown 12 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 19. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 June 2020.
All research outputs
#1,852,916
of 24,885,505 outputs
Outputs from BMC Bioinformatics
#374
of 7,601 outputs
Outputs of similar age
#35,525
of 323,473 outputs
Outputs of similar age from BMC Bioinformatics
#8
of 100 outputs
Altmetric has tracked 24,885,505 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,601 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,473 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 100 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.