↓ Skip to main content

Application of dual reading domains as novel reagents in chromatin biology reveals a new H3K9me3 and H3K36me2/3 bivalent chromatin state

Overview of attention for article published in Epigenetics & Chromatin, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
70 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Application of dual reading domains as novel reagents in chromatin biology reveals a new H3K9me3 and H3K36me2/3 bivalent chromatin state
Published in
Epigenetics & Chromatin, September 2017
DOI 10.1186/s13072-017-0153-1
Pubmed ID
Authors

Rebekka Mauser, Goran Kungulovski, Corinna Keup, Richard Reinhardt, Albert Jeltsch

Abstract

Histone post-translational modifications (PTMs) play central roles in chromatin-templated processes. Combinations of two or more histone PTMs form unique interfaces for readout and recruitment of chromatin interacting complexes, but the genome-wide mapping of coexisting histone PTMs remains an experimentally difficult task. We introduce here a novel type of affinity reagents consisting of two fused recombinant histone modification interacting domains (HiMIDs) for direct detection of doubly modified chromatin. To develop the method, we fused the MPP8 chromodomain and DNMT3A PWWP domain which have a binding specificity for H3K9me3 and H3K36me2/3, respectively. We validate the novel reagent biochemically and in ChIP applications and show its specific interaction with H3K9me3-H3K36me2/3 doubly modified chromatin. Modification specificity was confirmed using mutant double-HiMIDs with inactivated methyllysine binding pockets. Using this novel tool, we mapped coexisting H3K9me3-H3K36me2/3 marks in human cells by chromatin interacting domain precipitation (CIDOP). CIDOP-seq data were validated by qPCR, sequential CIDOP/ChIP and by comparison with CIDOP- and ChIP-seq data obtained with single modification readers and antibodies. The genome-wide distribution of H3K9me3-H3K36me2/3 indicates that it represents a novel bivalent chromatin state, which is enriched in weakly transcribed chromatin segments and at ZNF274 and SetDB1 binding sites. The application of double-HiMIDs allows the single-step study of co-occurrence and distribution of combinatorial chromatin marks. Our discovery of a novel H3K9me3-H3K36me2/3 bivalent chromatin state illustrates the power of this approach, and it will stimulate numerous follow-up studies on its biological functions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 70 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 29%
Researcher 13 19%
Student > Bachelor 4 6%
Student > Postgraduate 4 6%
Student > Master 4 6%
Other 10 14%
Unknown 15 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 29 41%
Agricultural and Biological Sciences 18 26%
Engineering 2 3%
Chemistry 2 3%
Unspecified 1 1%
Other 4 6%
Unknown 14 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 September 2017.
All research outputs
#15,480,316
of 23,003,906 outputs
Outputs from Epigenetics & Chromatin
#447
of 568 outputs
Outputs of similar age
#200,724
of 320,342 outputs
Outputs of similar age from Epigenetics & Chromatin
#8
of 13 outputs
Altmetric has tracked 23,003,906 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 568 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.7. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,342 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.