↓ Skip to main content

Temporal dynamics in microbial soil communities at anthrax carcass sites

Overview of attention for article published in BMC Microbiology, September 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

blogs
1 blog
twitter
12 X users
facebook
1 Facebook page

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Temporal dynamics in microbial soil communities at anthrax carcass sites
Published in
BMC Microbiology, September 2017
DOI 10.1186/s12866-017-1111-6
Pubmed ID
Authors

Karoline Valseth, Camilla L. Nesbø, W. Ryan Easterday, Wendy C. Turner, Jaran S. Olsen, Nils Chr. Stenseth, Thomas H. A. Haverkamp

Abstract

Anthrax is a globally distributed disease affecting primarily herbivorous mammals. It is caused by the soil-dwelling and spore-forming bacterium Bacillus anthracis. The dormant B. anthracis spores become vegetative after ingestion by grazing mammals. After killing the host, B. anthracis cells return to the soil where they sporulate, completing the lifecycle of the bacterium. Here we present the first study describing temporal microbial soil community changes in Etosha National Park, Namibia, after decomposition of two plains zebra (Equus quagga) anthrax carcasses. To circumvent state-associated-challenges (i.e. vegetative cells/spores) we monitored B. anthracis throughout the period using cultivation, qPCR and shotgun metagenomic sequencing. The combined results suggest that abundance estimation of spore-forming bacteria in their natural habitat by DNA-based approaches alone is insufficient due to poor recovery of DNA from spores. However, our combined approached allowed us to follow B. anthracis population dynamics (vegetative cells and spores) in the soil, along with closely related organisms from the B. cereus group, despite their high sequence similarity. Vegetative B. anthracis abundance peaked early in the time-series and then dropped when cells either sporulated or died. The time-series revealed that after carcass deposition, the typical semi-arid soil community (e.g. Frankiales and Rhizobiales species) becomes temporarily dominated by the orders Bacillales and Pseudomonadales, known to contain plant growth-promoting species. Our work indicates that complementing DNA based approaches with cultivation may give a more complete picture of the ecology of spore forming pathogens. Furthermore, the results suggests that the increased vegetation biomass production found at carcass sites is due to both added nutrients and the proliferation of microbial taxa that can be beneficial for plant growth. Thus, future B. anthracis transmission events at carcass sites may be indirectly facilitated by the recruitment of plant-beneficial bacteria.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 58 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 19%
Student > Ph. D. Student 9 16%
Researcher 7 12%
Student > Doctoral Student 5 9%
Other 4 7%
Other 6 10%
Unknown 16 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 28%
Environmental Science 6 10%
Veterinary Science and Veterinary Medicine 5 9%
Immunology and Microbiology 4 7%
Biochemistry, Genetics and Molecular Biology 3 5%
Other 6 10%
Unknown 18 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 15. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 March 2019.
All research outputs
#2,250,384
of 24,417,958 outputs
Outputs from BMC Microbiology
#144
of 3,358 outputs
Outputs of similar age
#42,963
of 324,360 outputs
Outputs of similar age from BMC Microbiology
#6
of 39 outputs
Altmetric has tracked 24,417,958 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,358 research outputs from this source. They receive a mean Attention Score of 4.2. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,360 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 87% of its contemporaries.