↓ Skip to main content

Genome-wide identification of leaf abscission associated microRNAs in sugarcane (Saccharum officinarum L.)

Overview of attention for article published in BMC Genomics, September 2017
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide identification of leaf abscission associated microRNAs in sugarcane (Saccharum officinarum L.)
Published in
BMC Genomics, September 2017
DOI 10.1186/s12864-017-4053-3
Pubmed ID
Authors

Ming Li, Zhaoxu Liang, Shanshan He, Yuan Zeng, Yan Jing, Weikuan Fang, Kaichao Wu, Guanyu Wang, Xia Ning, Lunwang Wang, Song Li, Hongwei Tan, Fang Tan

Abstract

Sugarcane (Saccharum officinarum L.) is an economically important crop, mainly due to the production of sugar and biofuel (Azevedo RA, Carvalho RF, Cia MC, & Gratão PL, Trop Plant Biol 4:42-51, 2011). Grown mainly in tropical and subtropical countries, sugarcane is a highly polyploid plant with up to ten copies of each chromosome, which increases the difficulties of genome assembly and genetic, physiologic and biochemical analyses. The increasing demands of sugar and the increasing cost of sugarcane harvest require sugarcane varieties which can shed their leaves during the maturity time, so it is important to study the mechanism of leaf abscission in sugarcane. To improve the understanding of miRNA roles in sugarcane leaf abscission, we reported the genome-wide characterization of miRNAs and their putative targets in sugarcane using deep sequencing for six small RNA libraries. In total, 93 conserved miRNAs and 454 novel miRNAs were identified in sugarcane using previously reported transcriptome as reference. Among them, 25 up-regulated and 13 down-regulated miRNAs were identified in leaf abscission sugarcane plants (LASP) compared to leaf packaging sugarcane plants (LPSP). Target prediction revealed several miRNA-mRNA modules including miR156-SPL, miR319-TPR2, miR396-GRF and miR408-LAC3 might be involved in the sugarcane leaf abscission. KEGG pathway enrichment analysis showed differentially expressed miRNAs may regulate pathways like "plant hormone signal transduction" and "plant-pathogen interaction", which is consistent with previous transcriptome study. In addition, we identified 96 variant miRNAs with 135 single nucleotide polymorphisms (SNPs). The expression of sugarcane miRNAs and variant miRNAs were confirmed by qRT-PCR. We identified a possible poaceae specific miRNA called miR5384 for the first time in sugarcane. We not only reported miR5384, a possible poaceae specific miRNA, for the first time in sugarcane but also presented some miRNA-mRNA modules including miR156-SPL, miR319-TPR2, miR396-GRF and miR408-LAC in sugarcane. These modules might be involved in the regulation of sugarcane leaf abscission during the maturity time. All of these findings may lay ground work for future application of sugarcane breeding program and benefit research studies of sugarcane miRNAs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 16%
Researcher 4 16%
Student > Master 3 12%
Student > Bachelor 2 8%
Student > Postgraduate 2 8%
Other 3 12%
Unknown 7 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 60%
Biochemistry, Genetics and Molecular Biology 2 8%
Engineering 1 4%
Unknown 7 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 September 2017.
All research outputs
#17,916,739
of 23,003,906 outputs
Outputs from BMC Genomics
#7,612
of 10,692 outputs
Outputs of similar age
#229,540
of 320,342 outputs
Outputs of similar age from BMC Genomics
#125
of 202 outputs
Altmetric has tracked 23,003,906 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,692 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,342 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 202 others from the same source and published within six weeks on either side of this one. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.