↓ Skip to main content

Detecting epileptic seizures with electroencephalogram via a context-learning model

Overview of attention for article published in BMC Medical Informatics and Decision Making, July 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Detecting epileptic seizures with electroencephalogram via a context-learning model
Published in
BMC Medical Informatics and Decision Making, July 2016
DOI 10.1186/s12911-016-0310-7
Pubmed ID
Authors

Guangxu Xun, Xiaowei Jia, Aidong Zhang

Abstract

Epileptic seizure is a serious health problem in the world and there is a huge population suffering from it every year. If an algorithm could automatically detect seizures and deliver the patient therapy or notify the hospital, that would be of great assistance. Analyzing the scalp electroencephalogram (EEG) is the most common way to detect the onset of a seizure. In this paper, we proposed the context-learning based EEG analysis for seizure detection (Context-EEG) algorithm. The proposed method aims at extracting both the hidden inherent features within EEG fragments and the temporal features from EEG contexts. First, we segment the EEG signals into EEG fragments of fixed length. Second, we learn the hidden inherent features from each fragment with a sparse auto-encoder and thus the dimensionality of the original data is reduced. Third, we translate each EEG fragment to an EEG word so that a continuous EEG signal is converted to a sequence of EEG words. Fourth, by analyzing the context information of EEG words, we learn the temporal features for EEG signals. And finally, we concatenate the hidden features and the temporal features together to train a binary classifier which can be used to detect the onset of an epileptic sezure. 4302 EEG fragments from four different patients are used to train and test our model. An error rate of 22.93 % is achieved by our model as a general, non-patient specific seizure detector. The error rate of our model is averagely 16.7 % lower than the other baseline models. Receiver operating characteristics (ROC curve) and area under curve (AUC) confirm the effectiveness of our model. Furthermore, we discuss the extracted features and how to reconstruct the original data based on the extracted features, as well as the parameter sensitivity. Given a EEG fragment, by extracting high-quality features (the hidden inherent features and temporal features) from the EEG signals, our Context-EEG model is able to detect the onset of a seizure with high accuracy in real time.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 45 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 9 20%
Researcher 6 13%
Student > Bachelor 6 13%
Student > Ph. D. Student 5 11%
Professor 2 4%
Other 10 22%
Unknown 7 16%
Readers by discipline Count As %
Engineering 15 33%
Computer Science 7 16%
Nursing and Health Professions 2 4%
Psychology 2 4%
Medicine and Dentistry 2 4%
Other 5 11%
Unknown 12 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 October 2017.
All research outputs
#20,449,496
of 23,005,189 outputs
Outputs from BMC Medical Informatics and Decision Making
#1,817
of 2,007 outputs
Outputs of similar age
#319,298
of 365,147 outputs
Outputs of similar age from BMC Medical Informatics and Decision Making
#37
of 41 outputs
Altmetric has tracked 23,005,189 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,007 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 365,147 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.