↓ Skip to main content

Amino acid supplements and metabolic health: a potential interplay between intestinal microbiota and systems control

Overview of attention for article published in Genes & Nutrition, October 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#24 of 406)
  • High Attention Score compared to outputs of the same age (90th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

news
2 news outlets
twitter
11 X users
facebook
3 Facebook pages
reddit
1 Redditor

Citations

dimensions_citation
50 Dimensions

Readers on

mendeley
130 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Amino acid supplements and metabolic health: a potential interplay between intestinal microbiota and systems control
Published in
Genes & Nutrition, October 2017
DOI 10.1186/s12263-017-0582-2
Pubmed ID
Authors

Francesco Bifari, Chiara Ruocco, Ilaria Decimo, Guido Fumagalli, Alessandra Valerio, Enzo Nisoli

Abstract

Dietary supplementation of essential amino acids (EAAs) has been shown to promote healthspan. EAAs regulate, in fact, glucose and lipid metabolism and energy balance, increase mitochondrial biogenesis, and maintain immune homeostasis. Basic science and epidemiological results indicate that dietary macronutrient composition affects healthspan through multiple and integrated mechanisms, and their effects are closely related to the metabolic status to which they act. In particular, EAA supplementation can trigger different and even opposite effects depending on the catabolic and anabolic states of the organisms. Among others, gut-associated microbial communities (referred to as gut microbiota) emerged as a major regulator of the host metabolism. Diet and host health influence gut microbiota, and composition of gut microbiota, in turn, controls many aspects of host health, including nutrient metabolism, resistance to infection, and immune signals. Altered communication between the innate immune system and the gut microbiota might contribute to complex diseases. Furthermore, gut microbiota and its impact to host health change largely during different life phases such as lactation, weaning, and aging. Here we will review the accumulating body of knowledge on the impact of dietary EAA supplementation on the host metabolic health and healthspan from a holistic perspective. Moreover, we will focus on the current efforts to establish causal relationships among dietary EAAs, gut microbiota, and health during human development.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 130 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 130 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 21 16%
Student > Ph. D. Student 15 12%
Student > Master 13 10%
Student > Bachelor 8 6%
Other 6 5%
Other 20 15%
Unknown 47 36%
Readers by discipline Count As %
Medicine and Dentistry 18 14%
Biochemistry, Genetics and Molecular Biology 17 13%
Agricultural and Biological Sciences 12 9%
Pharmacology, Toxicology and Pharmaceutical Science 6 5%
Immunology and Microbiology 5 4%
Other 21 16%
Unknown 51 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 25. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 March 2022.
All research outputs
#1,484,133
of 24,885,505 outputs
Outputs from Genes & Nutrition
#24
of 406 outputs
Outputs of similar age
#29,702
of 328,435 outputs
Outputs of similar age from Genes & Nutrition
#2
of 12 outputs
Altmetric has tracked 24,885,505 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 406 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,435 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.