↓ Skip to main content

Chloroplast phylogenomic analysis resolves deep-level relationships within the green algal class Trebouxiophyceae

Overview of attention for article published in BMC Ecology and Evolution, October 2014
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
wikipedia
2 Wikipedia pages

Citations

dimensions_citation
108 Dimensions

Readers on

mendeley
124 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Chloroplast phylogenomic analysis resolves deep-level relationships within the green algal class Trebouxiophyceae
Published in
BMC Ecology and Evolution, October 2014
DOI 10.1186/s12862-014-0211-2
Pubmed ID
Authors

Claude Lemieux, Christian Otis, Monique Turmel

Abstract

BackgroundThe green algae represent one of the most successful groups of photosynthetic eukaryotes, but compared to their land plant relatives, surprisingly little is known about their evolutionary history. This is in great part due to the difficulty of recognizing species diversity behind morphologically similar organisms. The Trebouxiophyceae is a species-rich class of the Chlorophyta that includes symbionts (e.g. lichenized algae) as well as free-living green algae. Members of this group display remarkable ecological variation, occurring in aquatic, terrestrial and aeroterrestrial environments. Because a reliable backbone phylogeny is essential to understand the evolutionary history of the Trebouxiophyceae, we sought to identify the relationships among the major trebouxiophycean lineages that have been previously recognized in nuclear-encoded 18S rRNA phylogenies. To this end, we used a chloroplast phylogenomic approach.ResultsWe determined the sequences of 29 chlorophyte chloroplast genomes and assembled amino acid and nucleotide data sets derived from 79 chloroplast genes of 61 chlorophytes, including 35 trebouxiophyceans. The amino acid- and nucleotide-based phylogenies inferred using maximum likelihood and Bayesian methods and various models of sequence evolution revealed essentially the same relationships for the trebouxiophyceans. Two major groups were identified: a strongly supported clade of 29 taxa (core trebouxiophyceans) that is sister to the Chlorophyceae¿+¿Ulvophyceae and a clade comprising the Chlorellales and Pedinophyceae that represents a basal divergence relative to the former group. The core trebouxiophyceans form a grade of strongly supported clades that include a novel lineage represented by the desert crust alga Pleurastrosarcina brevispinosa. The assemblage composed of the Oocystis and Geminella clades is the deepest divergence of the core trebouxiophyceans. Like most of the chlorellaleans, early-diverging core trebouxiophyceans are predominantly planktonic species, whereas core trebouxiophyceans occupying more derived lineages are mostly terrestrial or aeroterrestrial algae.ConclusionsOur phylogenomic study provides a solid foundation for addressing fundamental questions related to the biology and ecology of the Trebouxiophyceae. The inferred trees reveal that this class is not monophyletic; they offer new insights not only into the internal structure of the class but also into the lifestyle of its founding members and subsequent adaptations to changing environments.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 124 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 2 2%
Canada 2 2%
United Kingdom 1 <1%
Brazil 1 <1%
New Zealand 1 <1%
United States 1 <1%
Unknown 116 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 26 21%
Student > Master 20 16%
Student > Bachelor 19 15%
Researcher 13 10%
Professor 8 6%
Other 21 17%
Unknown 17 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 57 46%
Biochemistry, Genetics and Molecular Biology 26 21%
Environmental Science 10 8%
Earth and Planetary Sciences 2 2%
Immunology and Microbiology 2 2%
Other 5 4%
Unknown 22 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 February 2020.
All research outputs
#7,355,930
of 25,373,627 outputs
Outputs from BMC Ecology and Evolution
#1,676
of 3,714 outputs
Outputs of similar age
#73,667
of 265,638 outputs
Outputs of similar age from BMC Ecology and Evolution
#26
of 55 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,638 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 55 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.