↓ Skip to main content

A highly efficient ligation-independent cloning system for CRISPR/Cas9 based genome editing in plants

Overview of attention for article published in Plant Methods, October 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • Good Attention Score compared to outputs of the same age and source (73rd percentile)

Mentioned by

twitter
5 X users
patent
1 patent
facebook
1 Facebook page

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
62 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A highly efficient ligation-independent cloning system for CRISPR/Cas9 based genome editing in plants
Published in
Plant Methods, October 2017
DOI 10.1186/s13007-017-0236-9
Pubmed ID
Authors

Aftab A. Khan, Ashraf El-Sayed, Asma Akbar, Arianna Mangravita-Novo, Shaheen Bibi, Zunaira Afzal, David J. Norman, Gul Shad Ali

Abstract

Most current methods for constructing guide RNAs (gRNA) for the CRISPR/Cas9 genome editing system, depend on traditional cloning using specific type IIS restriction enzymes and DNA ligation. These methods consist of multiple steps of cloning, and are time consuming, resource intensive and not flexible. These issues are particularly exacerbated when multiple guide RNAs need to be assembled in one plasmid such as for multiplexing or for the paired nickases approach. Furthermore, identification of functional gRNA clones usually requires expensive in vitro screening. Addressing these issues will greatly facilitate usage and accessibility of CRISPR/Cas9 genome editing system to resource-limited laboratories. To improve efficiency of cloning multiple guide RNAs for the CRISPR/Cas9 system, we developed a restriction enzyme- and ligation-independent strategy for cloning gRNAs directly in plant expression vectors in one step. Our method relies on a negative selection marker and seamless cloning for combining multiple gRNAs directly in a plant expression vector in one reaction. In addition, using the Agrobacterium-mediated transient assays, this method provides a simple in planta procedure for assaying the effectiveness of multiple gRNAs very rapidly. For a fraction of resources used in the type IIS restriction enzyme-based cloning method and in vitro screening assays, the system reported here allows efficient construction and testing several ready-to-transfect gRNA constructs in < 3 days. In addition, this system is highly versatile and flexible, and by designing only two additional target-specific primers, multiple gRNAs can be easily assembled in any plasmid in a single reaction.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 62 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 21%
Student > Master 10 16%
Student > Ph. D. Student 7 11%
Student > Bachelor 6 10%
Unspecified 3 5%
Other 9 15%
Unknown 14 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 39%
Biochemistry, Genetics and Molecular Biology 13 21%
Unspecified 3 5%
Medicine and Dentistry 2 3%
Immunology and Microbiology 2 3%
Other 3 5%
Unknown 15 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 December 2020.
All research outputs
#6,102,291
of 24,848,516 outputs
Outputs from Plant Methods
#344
of 1,210 outputs
Outputs of similar age
#90,744
of 331,503 outputs
Outputs of similar age from Plant Methods
#10
of 34 outputs
Altmetric has tracked 24,848,516 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,210 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,503 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.