↓ Skip to main content

Silencing HOXD10 by promoter region hypermethylation activates ERK signaling in hepatocellular carcinoma

Overview of attention for article published in Clinical Epigenetics, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Silencing HOXD10 by promoter region hypermethylation activates ERK signaling in hepatocellular carcinoma
Published in
Clinical Epigenetics, October 2017
DOI 10.1186/s13148-017-0412-9
Pubmed ID
Authors

Yulin Guo, Yaojun Peng, Dan Gao, Meiying Zhang, Weili Yang, Enqiang Linghu, James G. Herman, François Fuks, Guanglong Dong, Mingzhou Guo

Abstract

Hepatocellular carcinoma is the fifth most common malignancy and the third leading cause of cancer-related death worldwide. Dysregulation of HomeoboxD10 (HOXD10) was found to suppress or promote cancer progression in different cancer types. The function and regulation of HOXD10 remain unclear in human hepatocellular carcinoma (HCC). Primary HCC samples (117), normal liver tissue samples (15), and 13 HCC cell lines (SNU182, SNU449, HBXF344, SMMC7721, Huh7, HepG2, LM3, PLC/PRF/5, BEL7402, SNU387, SNU475, QGY7703, and Huh1) were included in this study. Methylation-specific PCR, flow cytometry, western blot, transwell, siRNA, and chromatin immunoprecipitation assays were employed. HOXD10 was methylated in 76.9% (90/117) of human primary HCC samples. HOXD10 methylation was significantly associated with vessel cancerous embolus, tumor cell differentiation, and the 3-year overall survival rate (all P < 0.05). The expression of HOXD10 was regulated by promoter region methylation. HOXD10 suppressed colony formation, cell proliferation, cell invasion and migration, and induced G2/M phase arrest and apoptosis in HCC cells. HOXD10 suppressed HCC cell xenograft growth in mice. HOXD10 suppresses HCC growth by inhibiting ERK signaling. HOXD10 is frequently methylated in human HCC, and the expression of HOXD10 is regulated by promoter region methylation. HOXD10 suppresses HCC cell growth both in vitro and in vivo. HOXD10 suppresses human HCC by inhibiting ERK signaling.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 25%
Student > Ph. D. Student 6 25%
Student > Bachelor 3 13%
Professor 2 8%
Student > Postgraduate 2 8%
Other 3 13%
Unknown 2 8%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 42%
Medicine and Dentistry 4 17%
Pharmacology, Toxicology and Pharmaceutical Science 3 13%
Agricultural and Biological Sciences 3 13%
Nursing and Health Professions 1 4%
Other 0 0%
Unknown 3 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 September 2018.
All research outputs
#15,863,447
of 23,567,572 outputs
Outputs from Clinical Epigenetics
#895
of 1,309 outputs
Outputs of similar age
#206,832
of 328,947 outputs
Outputs of similar age from Clinical Epigenetics
#14
of 26 outputs
Altmetric has tracked 23,567,572 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,309 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.2. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,947 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.