↓ Skip to main content

A method for allocating low-coverage sequencing resources by targeting haplotypes rather than individuals

Overview of attention for article published in Genetics Selection Evolution, October 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

twitter
21 X users

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A method for allocating low-coverage sequencing resources by targeting haplotypes rather than individuals
Published in
Genetics Selection Evolution, October 2017
DOI 10.1186/s12711-017-0353-y
Pubmed ID
Authors

Roger Ros-Freixedes, Serap Gonen, Gregor Gorjanc, John M. Hickey

Abstract

This paper describes a heuristic method for allocating low-coverage sequencing resources by targeting haplotypes rather than individuals. Low-coverage sequencing assembles high-coverage sequence information for every individual by accumulating data from the genome segments that they share with many other individuals into consensus haplotypes. Deriving the consensus haplotypes accurately is critical for achieving a high phasing and imputation accuracy. In order to enable accurate phasing and imputation of sequence information for the whole population, we allocate the available sequencing resources among individuals with existing phased genomic data by targeting the sequencing coverage of their haplotypes. Our method, called AlphaSeqOpt, prioritizes haplotypes using a score function that is based on the frequency of the haplotypes in the sequencing set relative to the target coverage. AlphaSeqOpt has two steps: (1) selection of an initial set of individuals by iteratively choosing the individuals that have the maximum score conditional on the current set, and (2) refinement of the set through several rounds of exchanges of individuals. AlphaSeqOpt is very effective for distributing a fixed amount of sequencing resources evenly across haplotypes, which results in a reduction of the proportion of haplotypes that are sequenced below the target coverage. AlphaSeqOpt can provide a greater proportion of haplotypes sequenced at the target coverage by sequencing less individuals, as compared with other methods that use a score function based on haplotype frequencies in the population. A refinement of the initially selected set can provide a larger more diverse set with more unique individuals, which is beneficial in the context of low-coverage sequencing. We extend the method with an approach for filtering rare haplotypes based on their flanking haplotypes, so that only those that are likely to derive from a recombination event are targeted. We present a method for allocating sequencing resources so that a greater proportion of haplotypes are sequenced at a coverage that is sufficiently high for population-based imputation with low-coverage sequencing. The haplotype score function, the refinement step, and the new approach for filtering rare haplotypes make AlphaSeqOpt more effective for that purpose than previously reported methods for reducing sequencing redundancy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 21 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 21%
Researcher 7 18%
Student > Master 5 13%
Student > Doctoral Student 4 11%
Student > Bachelor 2 5%
Other 5 13%
Unknown 7 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 45%
Biochemistry, Genetics and Molecular Biology 7 18%
Computer Science 2 5%
Immunology and Microbiology 1 3%
Chemistry 1 3%
Other 0 0%
Unknown 10 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 March 2018.
All research outputs
#3,100,946
of 25,382,440 outputs
Outputs from Genetics Selection Evolution
#57
of 821 outputs
Outputs of similar age
#56,783
of 338,212 outputs
Outputs of similar age from Genetics Selection Evolution
#2
of 20 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 821 research outputs from this source. They receive a mean Attention Score of 4.1. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 338,212 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.