↓ Skip to main content

Sequence-specific detection of different strains of LCMV in a single sample using tentacle probes

Overview of attention for article published in Virology Journal, October 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sequence-specific detection of different strains of LCMV in a single sample using tentacle probes
Published in
Virology Journal, October 2017
DOI 10.1186/s12985-017-0863-9
Pubmed ID
Authors

Lina S. Franco, Susan A. Holechek, Michael R. Caplan, Joseph N. Blattman

Abstract

Virus infections often result in quasispecies of viral strains that can have dramatic impacts on disease outcomes. However, sequencing of viruses to determine strain composition is time consuming and often cost-prohibitive. Rapid, cost-effective methods are needed for accurate measurement of virus diversity to understand virus evolution and can be useful for experimental systems. We have developed a novel molecular method for sequence-specific detection of RNA virus genetic variants called Tentacle Probes. The probes are modified molecular beacons that have dramatically improved false positive rates and specificity in routine qPCR. To validate this approach, we have designed Tentacle Probes for two different strains of Lymphocytic Choriomeningitis Virus (LCMV) that differ by only 3 nucleotide substitutions, the parental Armstrong and the more virulent Clone-13 strain. One of these mutations is a missense mutation in the receptor protein GP1 that leads to the Armstrong strain to cause an acute infection and Clone-13 to cause a chronic infection instead. The probes were designed using thermodynamic calculations for hybridization between target or non-target sequences and the probe. Using this approach, we were able to distinguish these two strains of LCMV individually by a single nucleotide mutation. The assay showed high reproducibility among different concentrations of viral cDNA, as well as high specificity and sensitivity, especially for the Clone-13 Tentacle Probe. Furthermore, in virus mixing experiments we were able to detect less than 10% of Clone-13 cDNA diluted in Armstrong cDNA. Thus, we have developed a fast, cost-effective approach for identifying Clone-13 strain in a mix of other LCMV strains.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 30%
Researcher 2 20%
Professor 1 10%
Student > Doctoral Student 1 10%
Student > Bachelor 1 10%
Other 1 10%
Unknown 1 10%
Readers by discipline Count As %
Immunology and Microbiology 3 30%
Arts and Humanities 1 10%
Agricultural and Biological Sciences 1 10%
Social Sciences 1 10%
Medicine and Dentistry 1 10%
Other 1 10%
Unknown 2 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 November 2017.
All research outputs
#15,481,888
of 23,006,268 outputs
Outputs from Virology Journal
#1,965
of 3,059 outputs
Outputs of similar age
#203,964
of 325,895 outputs
Outputs of similar age from Virology Journal
#34
of 53 outputs
Altmetric has tracked 23,006,268 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,059 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.8. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 325,895 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 53 others from the same source and published within six weeks on either side of this one. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.