↓ Skip to main content

The complete chloroplast genome of Primulina and two novel strategies for development of high polymorphic loci for population genetic and phylogenetic studies

Overview of attention for article published in BMC Ecology and Evolution, November 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • Above-average Attention Score compared to outputs of the same age and source (62nd percentile)

Mentioned by

news
1 news outlet
twitter
2 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The complete chloroplast genome of Primulina and two novel strategies for development of high polymorphic loci for population genetic and phylogenetic studies
Published in
BMC Ecology and Evolution, November 2017
DOI 10.1186/s12862-017-1067-z
Pubmed ID
Authors

Chao Feng, Meizhen Xu, Chen Feng, Eric J. B. von Wettberg, Ming Kang

Abstract

Primulina Hance is an emerging model for studying evolutionary divergence, adaptation and speciation of the karst flora. However, phylogenetic relationships within the genus have not been resolved due to low variation detected in the cpDNA regions. Chloroplast genomes can provide important information for phylogenetic and population genetic studies. Recent advances in next-generation sequencing (NGS) techniques greatly facilitate sequencing whole chloroplast genomes for multiple individuals. Consequently, novel strategies for development of highly polymorphic loci for population genetic and phylogenetic studies based on NGS data are needed. For development of high polymorphic loci for population genetic and phylogenetic studies, two novel strategies are proposed here. The first protocol develops lineage-specific highly variable markers from the true high variation regions (Con_Seas) across whole cp genomes, instead of traditional noncoding regions. The pipeline has been integrated into a single perl script, and named "Con_Sea_Identification_and_PIC_Calculation". The second method assembles chloroplast fragments (poTs) and sub-super-marker (CpContigs) through our "SACRing" pipeline. This approach can fundamentally alter the strategies used in phylogenetic and population genetic studies based on cp markers, facilitating a transition from traditional Sanger sequencing to RAD-Seq. Both of these scripts are available at https://github.com/scbgfengchao/ . Three complete Primulina chloroplast genomes were assembled from genome survey data, and then two novel strategies were developed to yield highly polymorphic markers. For experimental evaluation of the first protocol, a set of Primulina species were used for PCR amplification. The results showed that these newly developed markers are more variable than traditional ones, and seem to be a better choice for phylogenetic and population studies in Primulin a. The second method was also successfully applied in population genetic studies of 21 individuals from three natural populations of Primulina. These two novel strategies may provide a pathway for similar research in other non-model species. The newly developed high polymorphic loci in this study will promote further the phylogenetic and population genetic studies in Primulina and other genera of the family Gesneriaceae.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 25%
Researcher 7 22%
Student > Doctoral Student 3 9%
Student > Master 3 9%
Student > Bachelor 2 6%
Other 4 13%
Unknown 5 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 21 66%
Biochemistry, Genetics and Molecular Biology 6 19%
Environmental Science 1 3%
Unknown 4 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 February 2018.
All research outputs
#3,562,512
of 25,382,440 outputs
Outputs from BMC Ecology and Evolution
#943
of 3,714 outputs
Outputs of similar age
#64,491
of 342,928 outputs
Outputs of similar age from BMC Ecology and Evolution
#21
of 56 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,928 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 56 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.